The control of American visceral leishmaniasis (AVL) is based on combating the vector and eliminating the domestic reservoir of the focus area - defined as 200 meters around human or canine cases. This paper discusses the use of spatial analysis techniques in the epidemiological surveillance of AVL in Araçatuba, São Paulo State, in order to propose a model for territorial epidemiological surveillance, reformulating current control strategies. The results showed that AVL transmission was not homogeneous; human cases were more frequent in areas with higher canine prevalence rates. Vector dispersion appeared to be restricted to a few houses, although it was not possible to model the vector density. In order to study the vector distribution and correlated covariates, a field study based on house sampling is being conducted. The results will aid the development of new spatial analysis tools and possibly redefine protocols and routines for the control of this endemic disease in urban areas.
Since 2000, the expansion of Sylvatic Yellow Fever (YF) has been observed in the southeast of Brazil, being detected in areas considered silent for decades. Epizootics in non-human primates (NHPs) are considered sentinel events for the detection of human cases. It is important to report epizootic events that could have impact on the conservation status of susceptible species. We describe the epizootics in NHPs, notified in state of São Paulo, Brazil, between September 2008 to August 2009. Ninety-one epizootic events, involving 147 animals, were reported in 36 counties. Samples were obtained from 65 animals (44.2%). Most of the epizootics (46.6%) were reported between March and April, the same period during which human cases of YF occurred in the state. Biological samples were collected from animals found dead and were sent to Instituto Adolfo Lutz, in São Paulo. Two samples, collected in two counties without an indication for YF vaccination, were positive for the virus. Another 48 animals were associated with YF by clinical-epidemiological linkage with laboratory confirmed cases. Because the disease in human and NHPs occurred in the same period, the detection of the virus in NHPs did not work as sentinel, but aided in the delineation of new areas of risk.
A major outbreak of yellow fever (YF) occurred in Brazil during 2016–2018. Epizootics in New World nonhuman primates are sentinel events for YF virus circulation. However, genus-specific susceptibilities and suitability for YF surveillance remain poorly understood. We obtained and compared epidemiologic, histopathologic, immunohistochemical, and molecular results from 93 human and 1,752 primate cases submitted during the recent YF outbreak in Brazil (2017), with the support of the Brazilian National YF Surveillance Program. We detected heterogeneous YF-associated profiles among the various genera of primates we analyzed.
Alouatta
primates were the most reliable sentinel;
Sapajus
and
Callicebus
primates had higher viral loads but lower proportional mortality rates.
Callithrix
primates were the least sensitive, showing lower viral loads, lower proportional mortality rates, and no demonstrable YF virus antigen or extensive lesions in liver, despite detectable viral RNA. These differences in susceptibility, viral load, and mortality rates should be considered in strategic surveillance of epizootics and control measures for YF.
São Paulo, a densely inhabited state in southeast Brazil that contains the fourth most populated city in the world, recently experienced its largest yellow fever virus (YFV) outbreak in decades. YFV does not normally circulate extensively in São Paulo, so most people were unvaccinated when the outbreak began. Surveillance in non-human primates (NHPs) is important for determining the magnitude and geographic extent of an epizootic, thereby helping to evaluate the risk of YFV spillover to humans. Data from infected NHPs can give more accurate insights into YFV spread than when using data from human cases alone. To contextualise human cases, identify epizootic foci and uncover the rate and direction of YFV spread in São Paulo, we generated and analysed virus genomic data and epizootic case data from NHPs in São Paulo. We report the occurrence of three spatiotemporally distinct phases of the outbreak in São Paulo prior to February 2018. We generated 51 new virus genomes from YFV positive cases identified in 23 different municipalities in São Paulo, mostly sampled from NHPs between October 2016 and January 2018. Although we observe substantial heterogeneity in lineage dispersal velocities between phylogenetic branches, continuous phylogeographic analyses of generated YFV genomes suggest that YFV
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.