A recently proposed
strategy to overcome multidrug resistance (MDR)
in cancer is to target the collateral sensitivity of otherwise resistant
cells. We designed a library of 120 compounds to explore the chemical
space around previously identified 8-hydroxyquinoline-derived Mannich
bases with robust MDR-selective toxicity. We included compounds to
study the effect of halogen and alkoxymethyl substitutions in R5 in
combination with different Mannich bases in R7, a shift of the Mannich
base from R7 to R5, as well as the introduction of an aromatic moiety.
Cytotoxicity tests performed on a panel of parental and MDR cells
highlight a strong influence of experimentally determined p
K
a
values of the donor atom moieties, indicating
that protonation and metal chelation are important factors modulating
the MDR-selective anticancer activity of the studied compounds. Our
results identify structural requirements increasing MDR-selective
anticancer activity, providing guidelines for the development of more
effective anticancer chelators targeting MDR cancer.
2-Arylsulfanyl- and benzylsulfanylpyridinium N-arylimides (2), easily available from tetrazolo[1,5-b]pyridinium salts (1), participate in 1,3-dipolar cycloaddition with aryl isothiocyanates and aryl isocyanates to result in formation of fused thioxo- and oxo[1,2,4]triazolium salts (5 and 12), respectively. This transformation is interpreted as a regular 1,3-cycloaddition followed by spontaneous elimination of the aryl- or benzylsulfanyl group. Formation of these triazolium salts can be followed--under appropriate reaction conditions--by ring-opening reactions to afford some new triazolyldienes (6). Recognition of the intermediate participation of the thiolate anion along the pathway 1 --> 5 allowed elaboration of a simple procedure to 5 implying a tandem reaction sequence.
6-Methyl substituted 2-aryl- and 2-benzylthiopyridinium N-imides reacted with an excess of isocyanates to give N,N-disubstituted exocyclic1H-imidazo[4,5-b]pyridin-2(3H)-ones. The products easily underwent spontaneous [1,5] hydrogen shift to provide the heteroaromatic imidazopyridinone isomers. The transformation implied the initial formation of [1,2,4]triazolo[2,3-a]pyridinium salt, followed by deprotonation and carbamoylation of the methylene moiety, and, finally, a rearrangement following a [1,3] sigmatropic pattern. Mechanistic considerations suggest and some experimental findings reveal the nonconcerted two-step mechanism of the ring transformation step.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.