The principal patterns of variability of the extratropical Northern Hemisphere (NH) wintertime circulation are examined, based on 42 yr of data from the NCAR-NCEP reanalyses. The two-dimensional phase space defined by the two leading PCs of the monthly mean sea level pressure (SLP) field poleward of 20ЊN is used as a basis for surveying the structure of the geopotential height and surface air temperature (SAT) fields. Together these two patterns account for roughly half the variance of SLP on interannual time scales and longer, and virtually all the planetary-scale SLP trends over the 42-yr period of record. The leading EOF corresponds to the NH annular mode (NAM), and the second EOF resembles the Pacific-North America (PNA) pattern. The leading EOF of the monthly mean geopotential height field at various levels throughout the troposphere and lower stratosphere is well represented by linear combinations of these two SLP patterns, as are the intraseasonal and interannual SLP fields, the NAM, the North Atlantic Oscillation (NAO), the PNA pattern, the pattern corresponding to the North Pacific index (NP), the cold ocean-warm land (COWL) pattern, the seasaw between the depths of the Aleutian and Icelandic lows (AIS), and the leading EOFs of lower-tropospheric temperature and midtropospheric wind. The combined influence of these patterns on temperature and rainfall and other variables can be represented in terms of compact vectorial plots. Interesting differences emerge when the EOF analysis is performed separately on the intraseasonal and interannual components of the NH SLP field. The former patterns appear to be hemispherically trapped, whereas the latter appear to be reflections of global structures, with ENSO clearly dominating the structure of interannual EOF2.
New estimates of greenhouse gas (GHG) emissions from the food system were developed at the country level, for the period 1990–2018, integrating data from crop and livestock production, on-farm energy use, land use and land use change, domestic food transport and food waste disposal. With these new country-level components in place, and by adding global and regional estimates of energy use in food supply chains, we estimate that total GHG emissions from the food system were about 16 CO2eq yr−1 in 2018, or one-third of the global anthropogenic total. Three quarters of these emissions, 13 Gt CO2eq yr−1, were generated either within the farm gate or in pre- and post-production activities, such as manufacturing, transport, processing, and waste disposal. The remainder was generated through land use change at the conversion boundaries of natural ecosystems to agricultural land. Results further indicate that pre- and post-production emissions were proportionally more important in developed than in developing countries, and that during 1990–2018, land use change emissions decreased while pre- and post-production emissions increased. We also report results on a per capita basis, showing world total food systems per capita emissions decreasing during 1990–2018 from 2.9 to 2.2 t CO2eq cap−1, with per capita emissions in developed countries about twice those in developing countries in 2018. Our findings also highlight that conventional IPCC categories, used by countries to report emissions in the National GHG inventory, systematically underestimate the contribution of the food system to total anthropogenic emissions. We provide a comparative mapping of food system categories and activities in order to better quantify food-related emissions in national reporting and identify mitigation opportunities across the entire food system.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.