Recently, several types of extensions of the latent class (LC) model have been developed for the analysis of data sets having a multilevel structure. The most popular variant is the multilevelLC model with finite mixture distributions at multiple levels of a hierarchical structure; that is, with LCs for both lower-level units (e.g. individuals, citizens, or patients) and higher-level units (e.g. groups, regions, or hospitals
Factor analysis is a statistical method for describing the associations among sets of observed variables in terms of a small number of underlying continuous latent variables. Various authors have proposed multilevel extensions of the factor model for the analysis of data sets with a hierarchical structure. These Multilevel Factor Models (MFMs) have in common that-as in multilevel regression analysis-variation at the higher level is modeled using continuous random effects. In this article, we present an alternative multilevel extension of factor analysis which we call the Multilevel Mixture Factor Model (MMFM). It is based on the assumption that higher level units belong to latent classes that differ in terms of the parameters of the factor model specified for the lower level units. We demonstrate the added value of MMFM compared with MFM, both from a theoretical and applied perspective, and we illustrate the complementarity of the two approaches with an empirical application on students' satisfaction with the University of Florence. The multilevel aspect of this application is that students are nested within study programs, which makes it possible to cluster these programs based on their differences in students' satisfaction.
Considering the case of the School of Economics of the University of Florence, the paper investigates whether the pre-enrolment assessment test is an effective tool to predict student performance. The analysis is tailored to evaluate the additional information yielded by the test beyond the background characteristics of the candidates already available from administrative records, such as the high school type and final grade. The student performance is measured by the number of gained credits after one year, which is a count variable with an irregular distribution and a peak in zero. These features pose a challenge in statistical modelling, which is solved by a two-part model with a logit specification for the zeros, while positive values are analyzed by quantile regression for counts. To disentangle direct and indirect effects of background variables, the result of the pre-enrolment assessment test is treated as an intermediate variable in a regression chain graph. The results show that the pre-enrolment test adds some information to predict student performance, which can be exploited for tutoring.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.