The New Urban Agenda (Agenda 2030) adopted at the United Nations Conference related to Sustainable Urban Development (Habitat III) in the year 2016 has the goal of prompting cities to achieve the identified Sustainable Development Goals by the year 2030. In this context, cities can experiment strategies of circular economy for the optimization of resources, waste reduction, reuse, and recycling. The data generated by the components of an Internet of Things (IoT) ecosystem can contribute in two relevant ways to a smart city model: (1) by the generation of a circular economy and (2) by the creation of intelligence to improve the decision-making processes by citizens or city managers. In this context, it is in our interest to understand the most relevant axes of the research related to IoT, particularly those based on the LoRa technology. LoRa has attracted the interest of researchers because it is an open standard and contributes to the development of sustainable smart cities, since they are linked to the concepts of a circular economy. Additionally, the intention of this work is to identify the technological or practical barriers that hamper the development of solutions, find possible future trends that could exist in the context of smart cities and IoT, and understand how they could be exploited by the industry and academy.
The periodontal probe remains the best clinical diagnostic tool for the collection of information regarding the health status and the attachment level of periodontal tissues. The aim of this study was to evaluate intra-and inter-examiner reproducibility of probing depth (PD) measurements made with a manual probe. With the approval of an Ethics Committee, 20 individuals without periodontal disease were selected if they presented at least 6 teeth per quadrant. Using a Williams periodontal probe, three calibrated thesis-level students (k > 0.6) assessed PD at 6 sites per tooth, from the gingival margin to the bottom of the periodontal sulcus (rounded to the next 0.5 mm). Initial and repeated measurements were performed by the same three examiners. The intra-examiner agreement (± 1 mm > 90%) was 99.85%, 100%, and 100% for the three examiners, respectively. When the variables vestibular/lingual surfaces, mesial/distal surfaces, or superior/inferior jaws were evaluated, no significant differences in reproducibility were detected at the inter-examiner level (p < 0.05). At this level, the only significant differences observed were in the three examiners' measurements of the anterior and posterior sites. While high intra-examiner reproducibility was detected, interexaminer level proved to be low. We can conclude that measurement of PD with a manual periodontal probe produced high reproducibility in healthy individuals. The operator's position can affect the reproducibility of repeated measures of PD. Calibration and operator training, rather than operator experience, were fundamental for reproducibility. Other factors, such as individual technique and probing depth force, can affect inter-examiner reproducibility.
The development and high growth of the Internet of Things (IoT) have improved quality of life and strengthened different areas in society. Many cities worldwide are looking forward to becoming smart. One of the most popular use cases in smart cities is the implementation of smart parking solutions, as they allow people to optimize time, reduce fuel consumption, and carbon dioxide emissions. Smart parking solutions have a defined architecture with particular components (sensors, communication protocols, and software solutions). Although there are only three components that compose a smart parking solution, it is important to mention that each component has many types that can be used in the deployment of these solutions. This paper identifies the most used types of every component and highlights usage trends in the established analysis period. It provides a complementary perspective and represents a very useful source of information. The scientific community could use this information to decide regarding the selection of types of components to implement a smart parking solution. For this purpose, herein we review several works related to smart parking solutions deployment. To achieve this goal, a semi-cyclic adaptation of the action research methodology combined with a systematic review is used to select papers related to the subject of study. The most relevant papers were reviewed to identify subcategories for each component; these classifications are presented in tables to mark the relevance of each paper accordingly. Trends of usage in terms of sensors, protocols and software solutions are analyzed and discussed in every section. In addition to the trends of usage, this paper determines a guide of complementary features from the type of components that should be considered when implementing a smart parking solution.
translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission or information storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now known or hereafter developed. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use. The publisher, the authors, and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors give a warranty, expressed or implied, with respect to the material contained herein or for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.