Medical data are often tricky to get mined for patterns even by the generally demonstrated successful modern methodologies of deep learning. This paper puts forward such a medical classification task, where patient registers of two of the categories are sometimes hard to be distinguished because of samples showing characteristics of both labels in turn in several repetitions of the screening procedure. To this end, the current research appoints a pre-processing clustering step (through self-organizing maps) to group the data based on shape similarity and relabel it accordingly. Subsequently, a deep learning approach (a tandem of convolutional and long short-term memory networks) performs the training classification phase on the 'cleaned' samples. The dual methodology was applied for the computational diagnosis of electrooculography tests within spino-cerebral ataxia of type 2. The accuracy obtained for the discrimination into three classes was of 78.24%. The improvement that this duo brings over the deep learner alone does not stem from significantly higher accuracy results when the performance is considered for all classes. The major finding of this combination is that half of the presymptomatic cases were correctly found, in opposition to the single deep model, where this category was sacrificed by the learner in favor of a good accuracy overall. A high accuracy in general is desirable for any medical task, however the correct identification of cases before the symptoms become evident is more important.
Abstract. The Finger-to-nose test (FNT) is an accepted neurological evaluation to study the coordination conditions. In this work, a methodology for the analysis of data from FNT is proposed, aimed at assessing the evolution of the condition of Spinocerebellar Ataxia type 2 (SCA2) patients. First of all, test results obtained from both patients and healthy individuals are processed through principal component analysis in order to reduce data dimensionality. Next, data were grouped in order to determine classes of typical responses. The Mean Shift algorithm was used to perform an unsupervised clustering with no previous assumption on the number of clusters, whereas the k-means method provided an independent validation on the optimal cluster number. Experimental results showed the highest internal evaluation for distribution into three clusters, which could be identified as the responses of healthy subjects, SCA2 patients with medium incoordination level, and patients with severe incoordination. A membership function is defined, which allows to establish the subjects' condition based on the classification of their responses. The results support that these protocols and the implemented clustering procedure can be used to accurately evaluate the incoordination stages of healthy subjects and SCA2 patients, thus offering a method to assess the impact of therapies and the progression of incoordination.
This paper aims at assessing spino-cerebellar type 2 ataxia by classifying electrooculography records into registers corresponding to healthy, presymptomatic and ill individuals. The primary used technique is the convolutional neural network applied to the time series of eye movements, called saccades. The problem is exceptionally hard, though, because the recorded saccadic movements for presymptomatic cases often do not substantially differ from those of healthy individuals. Precisely this distinction is of the utmost clinical importance, since early intervention on presymptomatic patients can ameliorate symptoms or at least slow their progression. Yet, each register contains a number of saccades that, although not consistent with the current label, have not been considered indicative of another class by the examining physicians. As a consequence, an unsupervised learning mechanism may be more suitable to handle this form of misclassification. Thus, our proposal introduces the k-means approach and the SOM method, as complementary techniques to analyse the time series. The three techniques operating in tandem lead to a well performing solution to this diagnosis problem.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.