In the framework of the DEMOnstration fusion power plant (DEMO) design coordinated by the EUROfusion consortium, a pre-conceptual design of the superconducting magnet system has been developed. For the toroidal field coils (TFCs), three winding pack (WP) options have been proposed; exploring different winding approaches (pancakes vs. layers), and manufacturing techniques (react & wind vs. wind & react Nb 3 Sn). Thermal-hydraulic and mechanical analyses on the three WPs have produced encouraging results, with some critical issues to be solved in future studies and optimizations. The experimental tests on TF prototype short sample conductors have demonstrated a limited performance degradation with electromagnetic cycles and significantly lower effective strains than most of the large-size Nb 3 Sn conductors reported in literature. The toroidal field quench protection circuit has been studied, starting from different topologies and focusing on the most promising one. Two designs are also presented for the central solenoid magnet, with preliminary evaluations on the AC losses during the plasma breakdown. Finally, the design of a TF winding pack based on HTS conductors and the experimental tests on "fusion-relevant" HTS cables are illustrated.
The DEMO reactor is expected to be the first application of fusion for electricity generation in the near future. To this aim conceptual design activities are progressing in Europe (EU) under the lead of the EUROfusion Consortium in order to drive on the development of the major tokamak systems. In 2014 the activities carried out by the magnet system project team were focused on the Toroidal Field (TF) magnet system design and demonstrated major achievements in terms of concept proposals and of consolidated evaluations against design criteria. Several magnet system R&D activities were conducted in parallel, together with broad investigations on High Temperature Superconductor (HTS) technologies. In this paper we present the outcomes of the work conducted in two areas in the 2014 magnet work program: (1) the EU inductive reactor (called DEMO1) 2014 configuration (power plant operating under inductive regime) was the basis of conceptual design activities, including further optimizations; and (2) the HTS R&D activities building upon the consolidated knowledge acquired over the past years
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.