While the radio spectrum allocation is well regulated, there is little knowledge about its actual utilization over time and space. This limitation hinders taking effective actions in various applications including cognitive radios, electrosmog monitoring, and law enforcement. We introduce Electrosense, an initiative that seeks a more efficient, safe and reliable monitoring of the electromagnetic space by improving the accessibility of spectrum data for the general public. A collaborative spectrum monitoring network is designed that monitors the spectrum at large scale with low-cost spectrum sensing nodes. The large set of data is stored and processed in a big data architecture and provided back to the community with an open spectrum data as a service model, that allows users to build diverse and novel applications with different requirements. We illustrate useful usage scenarios of the Electrosense data.Comment: Under revie
Web spectrum monitoring systems based on crowdsourcing have recently gained popularity. These systems are however limited to applications of interest for governamental organizations or telecom providers, and only provide aggregated information about spectrum statistics. The result is that there is a lack of interest for layman users to participate, which limits its widespread deployment. We present Electrosense+ which addresses this challenge and creates a generalpurpose and open platform for spectrum monitoring using low-cost, embedded, and softwaredefined spectrum IoT sensors. Electrosense+ allows users to remotely decode specific parts of the radio spectrum. It builds on the centralized architecture of its predecessor, Electrosense, for controlling and monitoring the spectrum IoT sensors, but implements a real-time and peer-to-peer communication system for scalable spectrum data decoding. We propose different mechanisms to incentivize the participation of users for deploying new sensors and keep them operational in the Electrosense network. As a reward for the user, we propose an incentive accounting system based on virtual tokens to encourage the participants to host IoT sensors. We present the new Electrosense+ system architecture and evaluate its performance at decoding various wireless signals, including FM radio, AM radio, ADS-B, AIS, LTE, and ACARS.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.