The United Nations projects that one in every six people will be over the age of 65 by the year 2050. With a rapidly aging population, the risk of Alzheimer's disease (AD) becomes a major concern. AD is a multifactorial disease that involves neurodegeneration in the brain with mild dementia and deficits in memory and other cognitive domains. Additionally, it has been established that individuals with Human Immunodeficiency Virus-1 (HIV-1) experience a 5 to 10-year accelerated aging and an increased risk of developing HIV-associated neurocognitive disorders (HAND). Despite a significant amount of clinical evidence pointing towards a potential overlap between neuropathogenic processes in HAND and AD, the underlying epigenetic link between these two diseases is mostly unknown. This study is focused on identifying differentially expressed genes observed in both AD and HAND using linear regression models and a more robust significance analysis of microarray. The results established that the dysregulated type 1 and 2 interferon pathways observed in both AD and HAND contribute to the similar pathologies of these diseases within the brain. The current study identifies the important roles of interferon pathways in AD and HAND, a relationship that may be useful for earlier detection in the future.
: The Human Immunodeficiency Virus (HIV-1) infection remains a persistent predicament for the State of Texas, ranking seventh among the most documented HIV cases in the United States. In this regard, the Rio Grande Valley (RGV) in South Texas is considered as one of the least investigated areas of the state with respect to HIV infection and HIV associated comorbidities. Considering the 115% increase in average HIV incidence rates per 100,000 within the RGV from 2007-2015, it is worth characterizing this population with respect to their HIV-1 infection, HIV-1 Associated Neurocognitive Disorders (HAND), and the association of treatment with combined antiretroviral therapy (cART). Moreover, the increased rate of Type-2 Diabetes (T2D) in the RGV population is intertwined with that of HIV-1 infection facing challenges due to the lack of knowledge about prevention to inadequate access to healthcare. Hence, the role of T2D in the development of HAND among the people living with HIV (PLWH) in the RGV will be reviewed to establish a closer link between T2D and HAND in cART-treated patients of the RGV.
Background: HIV Associated Neurological Disorders (HAND) is relatively common among people with HIV-1 infection, even those taking combined antiretroviral treatment (cART). Genome-wide screening of transcription regulation in brain tissue helps in identifying substantial abnormalities present in patients’ gene transcripts and to discover possible biomarkers for HAND. This study explores the possibility of identifying differentially expressed (DE) genes, which can serve as potential biomarkers to detect HAND. In this study, we have investigated the gene expression levels of three subject groups with different impairment levels of HAND along with a control group in three distinct brain sectors: white matter, frontal cortex, and basal ganglia. Methods: Linear models with weighted least squares along with Benjamini-Hochberg multiple corrections were used to identify DE genes in each brain region. Genes with an adjusted p-value of less than 0.01 were identified as differentially expressed. Principal component analyses (PCA) were performed to detect any groupings among the subject groups. Significance Analysis of Microarrays (SAM) and random forests (RF) methods with two distinct approaches were used to identify DE genes. Results: A total of 710 genes in basal ganglia, 794 genes in the frontal cortex, and 1481 genes in white matter were screened. The highest proportion of DE genes was observed within the two brain regions, frontal neocortex, and basal ganglia. PCA analyses do not exhibit clear groupings among four subject groups. SAM and RF models reveal the genes, CIRBP, RBM3, GPNMB, ISG15, IFIT6, IFI6, and IFIT3, to have DE genes in the frontal cortex or basal ganglia among the subject groups. The gene, GADD45A, a protein-coding gene whose transcript levels tend to increase with stressful growth arrest conditions, was consistently ranked among the top genes by both RF models within the frontal cortex. Conclusions: Our study contributes to a comprehensive understanding of the gene expression levels of the subject with different severity levels of HAND. Several genes that appear to play critical roles in the inflammatory response have been found, and they have an excellent potential to be used as biomarkers to detect HAND under further investigations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.