Cystic fibrosis is a lethal autosomal recessive condition caused by a defect of the transmembrane conductance regulator gene that has a key role in cell homeostasis. A dysfunctional cystic fibrosis transmembrane conductance regulator impairs the efflux of cell anions such as chloride and bicarbonate, and also that of other solutes such as reduced glutathione. This defect produces an increased viscosity of secretions together with other metabolic defects of epithelia that ultimately promote the obstruction and fibrosis of organs. Recurrent pulmonary infections and respiratory dysfunction are main clinical consequences of these pathogenetic events, followed by pancreatic and liver insufficiency, diabetes, protein-energy malnutrition, etc. This complex comorbidity is associated with the extensive injury of different biomolecular targets by reactive oxygen species, which is the biochemical hallmark of oxidative stress. These biological lesions are particularly pronounced in the lung, in which the extent of oxidative markers parallels that of inflammatory markers between chronic events and acute exacerbations along the progression of the disease. Herein, an abnormal flux of reactive oxygen species is present by the sustained activation of neutrophils and other cystic fibrosis-derived defects in the homeostatic processes of pulmonary epithelia and lining fluids. A sub-optimal antioxidant protection is believed to represent a main contributor to oxidative stress and to the poor control of immuno-inflammatory pathways in these patients. Observed defects include an impaired reduced glutathione metabolism and lowered intake and absorption of fat-soluble antioxidants (vitamin E, carotenoids, coenzyme Q-10, some polyunsaturated fatty acids, etc.) and oligoelements (such as Se, Cu and Zn) that are involved in reactive oxygen species detoxification by means of enzymatic defenses. Oral supplements and aerosolized formulations of thiols have been used in the antioxidant therapy of this inherited disease with the main aim of reducing the extent of oxidative lesions and the rate of lung deterioration. Despite positive effects on laboratory end points, poor evidence was obtained on the side of clinical outcome so far. These aspects examined in this critical review of the literature clearly suggest that further and more rigorous trials are needed together with new generations of pharmacological tools to a more effective antioxidant and anti-inflammatory therapy of cystic fibrosis patients. This article is part of a Special Issue entitled: Antioxidants and Antioxidant Treatment in Disease.
The chemical composition of the essential oils of Laurus nobilis, Juniperus oxycedrus ssp. oxycedrus, Thuja orientalis, Cupressus sempervirens ssp. pyramidalis, Pistacia palaestina, Salvia officinalis, and Satureja thymbra was determined by GC/MS analysis. Essential oils have been evaluated for their inhibitory activity against SARS-CoV and HSV-1 replication in vitro by visually scoring of the virus-induced cytopathogenic effect post-infection. L. nobilis oil exerted an interesting activity against SARS-CoV with an IC(50) value of 120 microg/ml and a selectivity index (SI) of 4.16. This oil was characterized by the presence of beta-ocimene, 1,8-cineole, alpha-pinene, and beta-pinene as the main constituents. J. oxycedrus ssp. oxycedrus oil, in which alpha-pinene and beta-myrcene were the major constituents, revealed antiviral activity against HSV-1 with an IC(50) value of 200 microg/ml and a SI of 5.
Background Information about the harmful effects of vaping is sparse and inconsistent, therefore, since the use of electronic cigarettes (e-CIGs) has become increasingly popular as a tool to limit tobacco smoking, it is urgent to establish the safety or the toxicity of the liquid vaporized by the atomizer of the commercial e-CIGs. Methods Skin (HaCaT) and lung (A549) cells, the main targets of cigarette smoke, were exposed to e-CIG vapor (e-CIG Mini Touch T-Fumo T-TEX) and cigarette smoke (UK research cigarette) in a smoke chamber in vitro. The cytotoxic effect of the exposure was analyzed in both cell types by ultrastructural morphology, Trypan Blue exclusion test and LDH assay. In addition, pro-inflammatory cytokines were measured in culture medium by the Bio-Plex cytokine assay kit. Results The cytotoxic components of e-CIG were restrained to the flavoring compound and, to a lesser extent, to nicotine and their effects were comparable to that of cigarette smoke. Humectants alone exhibited no cytotoxicity but induced the release of cytokines and pro-inflammatory mediators, mainly in keratinocytes. Conclusions Based on our results, we can state that e-CIG vapors exposure is not completely harmless, although far less toxic than CS. In fact, besides the deleterious effect of flavor and nicotine, even the humectants alone are able to evocate some adverse cellular events, such as enhanced cytokines release. This study will hopefully promote the development of truly innocuous e-CIGs to help people quit smoking.
Screening a cDNA library from human skeletal muscle and cardiac muscle with a cDNA probe derived from junctin led to the isolation of two groups of cDNA clones. The first group displayed a deduced amino acid sequence that is 84% identical to that of dog heart junctin, whereas the second group had a single open reading frame that encoded a polypeptide with a predicted mass of 33 kDa, whose first 78 NH 2 -terminal residues are identical to junctin whereas its COOH terminus domain is identical to aspartyl -hydroxylase, a member of the ␣-ketoglutarate-dependent dioxygenase family. We named the latter amino acid sequence junctate. Northern blot analysis indicates that junctate is expressed in a variety of human tissues including heart, pancreas, brain, lung, liver, kidney, and skeletal muscle. Fluorescence in situ hybridization analysis revealed that the genetic loci of junctin and junctate map to the same cytogenetic band on human chromosome 8. Analysis of intron/exon boundaries of the genomic BAC clones demonstrate that junctin, junctate, and aspartyl -hydroxylase result from alternative splicing of the same gene.The predicted lumenal portion of junctate is enriched in negatively charged residues and is able to bind calcium. Scatchard analysis of equilibrium 45
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.