Background: Gliomas in dogs remain poorly understood.Objectives: To characterize the clinicopathologic findings, diagnostic imaging features and survival of a large sample of dogs with glioma using the Comparative Brain Tumor Consortium diagnostic classification.Animals: Ninety-one dogs with histopathological diagnosis of glioma.Methods: Multicentric retrospective case series. Signalment, clinicopathologic findings, diagnostic imaging characteristics, treatment, and outcome were used. Tumors were reclassified according to the new canine glioma diagnostic scheme.Results: No associations were found between clinicopathologic findings or survival and tumor type or grade. However, definitive treatments provided significantly (P = .03) improved median survival time (84 days; 95% confidence interval [CI],
BackgroundThe term meningoencephalocele (MEC) describes a herniation of cerebral tissue and meninges through a defect in the cranium, whereas a meningocele (MC) is a herniation of the meninges alone.Hypothesis/ObjectivesTo describe the clinical features, magnetic resonance imaging (MRI) characteristics, and outcomes of dogs with cranial MC and MEC.AnimalsTwenty‐two client‐owned dogs diagnosed with cranial MC or MEC.MethodsMulticentric retrospective descriptive study. Clinical records of 13 institutions were reviewed. Signalment, clinical history, neurologic findings and MRI characteristics as well as treatment and outcome were recorded and evaluated.ResultsMost affected dogs were presented at a young age (median, 6.5 months; range, 1 month – 8 years). The most common presenting complaints were seizures and behavioral abnormalities. Intranasal MEC was more common than parietal MC. Magnetic resonance imaging identified meningeal enhancement of the protruded tissue in 77% of the cases. Porencephaly was seen in all cases with parietal MC. Cerebrospinal fluid (CSF) analysis identified mild abnormalities in 4 of 11 cases. Surgery was not performed in any affected dog. Seventeen patients were treated medically, and seizures were adequately controlled with anti‐epileptic drugs in 10 dogs. Dogs with intranasal MEC and mild neurologic signs had a fair prognosis with medical treatment.Conclusion and clinical importanceAlthough uncommon, MC and MEC should be considered as a differential diagnosis in young dogs presenting with seizures or alterations in behavior. Medical treatment is a valid option with a fair prognosis when the neurologic signs are mild.
Dogs develop gliomas with similar histopathological features to human gliomas and share with them the limited success of current therapeutic regimens such as surgery and radiation. The tumor microenvironment in gliomas is influenced by immune cell infiltrates. The present study aims to immunohistochemically characterize the tumor-infiltrating lymphocyte (TIL) population of naturally occurring canine gliomas, focusing on the expression of Forkhead box P3-positive (FOXP3+) regulatory T-cells (Tregs). Forty-three canine gliomas were evaluated immunohistochemically for the presence of CD3+, FOXP3+, and CD20+ TILs. In low-grade gliomas, CD3+ TILs were found exclusively within the tumor tissue. In high-grade gliomas, they were present in significantly higher numbers throughout the tumor and in the brain-tumor junction. CD20+ TILs were rarely found in comparison to CD3+ TILs. FOXP3+ TILs shared a similar distribution with CD3+ TILs. The accumulation of FOXP3+ Tregs within the tumor was more pronounced in astrocytic gliomas than in tumors of oligodendroglial lineage and the difference in expression was significant when comparing low-grade oligodendrogliomas and high-grade astrocytomas. Only high-grade astrocytomas presented FOXP3+ cells with tumoral morphology. In spontaneous canine gliomas, TILs display similar characteristics (density and distribution) as described for human gliomas, supporting the use of the dog as an animal model for translational immunotherapeutic studies.
Congenital vertebral malformations (CVM) are common in brachycephalic 'screw-tailed' dogs; they can be associated with neurological deficits and a genetic predisposition has been suggested. The purpose of this study was to evaluate radiography as a screening method for congenital thoracic vertebral malformations in brachycephalic 'screw-tailed' dogs by comparing it with CT. Forty-nine dogs that had both radiographic and CT evaluations of the thoracic vertebral column were included. Three observers retrospectively reviewed the images independently to detect CVMs. When identified, they were classified according to a previously published radiographic classification scheme. A CT consensus was then reached. All observers identified significantly more affected vertebrae when evaluating orthogonal radiographic views compared with lateral views alone; and more affected vertebrae with the CT consensus compared with orthogonal radiographic views. Given the high number of CVMs per dog, the number of dogs classified as being CVM free was not significantly different between CT and radiography. Significantly more midline closure defects were also identified with CT compared with radiography. Malformations classified as symmetrical or ventral hypoplasias on radiography were frequently classified as ventral and medial aplasias on CT images. Our results support that CT is better than radiography for the classification of CVMs and this will be important when further evidence of which are the most clinically relevant CVMs is identified. These findings are of particular importance for designing screening schemes of CVMs that could help selective breeding programmes based on phenotype and future studies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.