BackgroundPatients with deep brain stimulation (DBS) implants have limited access to MRI due to safety concerns associated with RF‐induced heating. Currently, MRI in these patients is allowed in 1.5T horizontal bore scanners utilizing pulse sequences with reduced power. However, the use of 3T MRI in such patients is increasingly reported based on limited safety assessments. Here we present the results of comprehensive RF heating measurements for two commercially available DBS systems during MRI at 1.5T and 3T.PurposeTo assess the effect of imaging landmark, DBS lead configuration, and patient's body composition on RF heating of DBS leads during MRI at 1.5T and 3T.Study TypePhantom and ex vivo study.Population/Subjects/Phantom/Specimen/Animal ModelGel phantoms and cadaver brain.Field Strength/Sequence1.5T and 3T, T1‐weighted turbo spin echo.AssessmentRF heating was measured at the tips of DBS leads implanted in brain‐mimicking gel. Image artifact was assessed in a cadaver brain implanted with an isolated DBS lead.Statistical TestsDescriptive.ResultsWe observed substantial fluctuation in RF heating, mainly affected by phantom composition and DBS lead configuration, ranging from 0.14°C to 23.73°C at 1.5T, and from 0.10°C to 7.39°C at 3T. The presence of subcutaneous fat substantially altered RF heating at the electrode tips (3.06°C < ∆T < 19.05° C). Introducing concentric loops in the extracranial portion of the lead at the surgical burr hole reduced RF heating by up to 89% at 1.5T and up to 98% at 3T compared to worst‐case heating scenarios.Data ConclusionDevice configuration and patient's body composition substantially altered the RF heating of DBS leads during MRI. Interestingly, certain lead trajectories consistently reduced RF heating and image artifact.Level of Evidence 1Technical Efficacy Stage 1J. MAGN. RESON. IMAGING 2021;53:599–610.
Although global movement abnormalities in the lower extremity post-stroke have been studied, the expression of specific motor impairments such as weakness and abnormal muscle and joint-torque coupling patterns have received less attention. We characterized changes in strength, muscle coactivation and associated joint torque couples in the paretic and non-paretic extremity of 15 participants with chronic post-stroke hemiparesis (age 59.6yrs ± 15.2) compared to 8 age-matched controls. Participants performed isometric maximum torques in hip abduction, adduction, flexion and extension, knee flexion and extension, ankle dorsi- and plantarflexion and submaximal torques in hip extension and ankle plantarflexion. Surface EMGs of 10 lower extremity muscles were measured. Relative weakness (paretic extremity compared to the non-paretic extremity) was measured in post-stroke participants. Differences in EMGs and joint torques associated with maximum voluntary torques were tested using linear mixed effects models. Results indicate significant post-stroke torque weakness in all degrees of freedom except hip extension and adduction, adductor coactivation during extensor tasks, in addition to synergistic muscle coactivation patterns. This was more pronounced in the paretic extremity compared to the non-paretic extremity and to controls. Results also indicated significant inter-joint torque couples during maximum and submaximal hip extension in both extremities of post-stroke participants and in controls only during maximal hip extension. Additionally, significant inter-joint torque couples were identified only in the paretic extremity during ankle plantarflexion. A better understanding of these motor impairments is expected to lead to more effective interventions for post-stroke gait and posture.
Stroke lesions interrupt descending corticofugal fibers that provide the volitional control of the upper and lower extremities. Despite the evident manifestation of movement impairments post-stroke during standing and gait, neural constraints in the ability to generate joint torque combinations in the lower extremities are not yet well determined. Twelve chronic hemiparetic participants and 8 age-matched control individuals participated in the present study. In an isometric setup, participants were instructed to combine submaximal hip extension or ankle plantarflexion torques with maximal hip abduction torques. Statistical analyses were run using linear mixed effects models. Results for the protocol combining hip extension and abduction indicate that participants post-stroke have severe limitations in the amount of hip abduction torque they can generate, dependent upon hip extension torque magnitude. These effects are manifested in the paretic extremity by the appearance of hip adduction torques instead of hip abduction at higher levels of hip extension. In the non-paretic extremity, significant reductions of hip abduction were also observed. In contrast, healthy control individuals were capable of combining varied levels of hip extension with maximal hip abduction. When combining ankle plantarflexion and hip abduction, only the paretic extremity showed reductions in the ability to generate hip abduction torques at increased levels of ankle plantarflexion. Our results provide insight into the neural mechanisms controlling the lower extremity post-stroke, supporting previously hypothesized increased reliance on postural brainstem motor pathways. These pathways have a greater dominance in the control of proximal joints (hip) compared to distal joints (ankle) and lead to synergistic activation of musculature due to their diffuse, bilateral connections at multiple spinal cord levels. We measured, for the first time, bilateral constraints in hip extension/abduction coupling in hemiparetic stroke, again in agreement with the expected increased reliance on bilateral brainstem motor pathways. Understanding of these neural constraints in the post-stroke lower extremities is key in the development of more effective rehabilitation interventions that target abnormal joint torque coupling patterns.
Ultra-high field MRI at 7 T can produce much better visualization of sub-cortical structures compared to lower field, which can greatly help target verification as well as overall treatment monitoring for patients with deep brain stimulation (DBS) implants. However, use of 7 T MRI for such patients is currently contra-indicated by guidelines from the device manufacturers due to the safety issues. The aim of this study was to provide an assessment of safety and image quality of ultra-high field magnetic resonance imaging at 7 T in patients with deep brain stimulation implants. We performed experiments with both lead-only and complete DBS systems implanted in anthropomorphic phantoms. RF heating was measured for 43 unique patient-derived device configurations. Magnetic force measurements were performed according to ASTM F2052 test method, and device integrity was assessed before and after experiments. Finally, we assessed electrode artifact in a cadaveric brain implanted with an isolated DBS lead. RF heating remained below 2°C, similar to a fever, with the 95% confidence interval between 0.38°C-0.52°C. Magnetic forces were well below forces imposed by gravity, and thus not a source of concern. No device malfunctioning was observed due to interference from MRI fields. Electrode artifact was most noticeable on MPRAGE and T2*GRE sequences, while it was minimized on T2-TSE images. Our work provides the safety assessment of ultra-high field MRI at 7 T in patients with DBS implants. Our results suggest that 7 T MRI may be performed safely in patients with DBS implants for specific implant models and MRI hardware.
BACKGROUNDPatients with deep brain stimulation (DBS) implants have limited access to MRI due to safety concerns associated with RF-induced heating. Currently, MRI in these patients is allowed only in 1.5T horizontal scanners and with pulse sequences with reduced power.Nevertheless, off-label use of MRI at 3T is increasingly reported based on limited safety assessments. Here we present results of systematic RF heating measurements for two commercially available DBS systems during MRI at 1.5T and 3T. from 0.10℃ to 7.39℃ at 3T. The presence of subcutaneous fat substantially altered RF heating at electrode tips (-3.06℃ < ∆ < 19.05℃). Introducing concentric loops in the extracranial portion of the lead at the surgical burr hole reduced RF heating by up to 89% at 1.5T and up to 98% at 3T compared to worst case heating scenarios. DATA CONCLUSIONDevice configuration and patient body composition significantly altered the RF heating of DBS leads during MRI at 1.5T and 3T. Interestingly, certain lead trajectories consistently reduced RF heating and image artifact over different imaging landmarks, RF frequencies, and phantom compositions. Such trajectories could be implemented in patients with minimal disruption to the surgical workflow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.