We present a microscope on chip for automated imaging of Drosophila embryos by light sheet fluorescence microscopy. This integrated device, constituted by both optical and microfluidic components, allows the automatic acquisition of a 3D stack of images for specimens diluted in a liquid suspension. The device has been fully optimized to address the challenges related to the specimens under investigation. Indeed, the thickness and the high ellipticity of Drosophila embryos can degrade the image quality. In this regard, optical and fluidic optimization has been carried out to implement dual‐sided illumination and automatic sample orientation. In addition, we highlight the dual color investigation capabilities of this device, by processing two sample populations encoding different fluorescent proteins. This work was made possible by the versatility of the used fabrication technique, femtosecond laser micromachining, which allows straightforward fabrication of both optical and fluidic components in glass substrates.
In our work we present an optofluidic‐based microscope on chip for 3D imaging of Drosophila embryos with dual color capabilities. The cover image shows the device during experimental validation along with the acquired images of two different embryos which are automatically optically sectioned while flowing in the microfluidic channel. The frames reveal internal volumetric features of the specimens.Further details can be found in the article by Roberto Memeo, Petra Paiè, Federico Sala, Michele Castriotta, Chiara Guercio, Thomas Vaccari, Roberto Osellame, Andrea Bassi, and Francesca Bragheri (e202000396).
image
In this work we demonstrate novel integrated-optics modulators and switches, realized in a glass substrate by femtosecond laser pulses. These devices are based on oscillating microcantilevers, machined by water-assisted laser ablation. Single mode-optical waveguides are laser-inscribed inside the cantilever beam and continue in the substrate beyond the cantilever's tip. By exciting the resonant oscillation of the mechanical structure, coupling between the waveguide segments is varied in time. Operation frequencies are in the range of tens of kilohertz, thus they markedly overcome the response-time limitation of other glass-based modulators, which rely on the thermo-optic effect. These components may be integrated in more complex waveguide circuits or optofluidic lab-on-chips, to provide periodic and high-frequency modulation of the optical signals.
Femtosecond laser micromachining is becoming an established technique for the fabrication of complex three-dimensional structures in glass. The combination of laser writing and chemical etching increases the technique versatility by allowing the fabrication of hollow structures within the bulk material. The possibility to encompass both optical and fluidic components in a single substrate allows us to realize optofluidic devices usable in several application fields. Here, we present new investigations of laser-assisted etching in Eagle XG glass showing good etching conditions at low repetition rates, where thermal effects can be neglected, and low irradiation speeds, which allow for complex microchannel network formation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.