HAL is a multidisciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers. L'archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d'enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.
International audienceThis paper proposes a method to study the impact of passive circuits such as filters, loads, and board layout on conducted electromagnetic emissions. The method is dedicated to power converters with N-active conductors and a ground conductor, followed by passive circuits. A sophisticated use of impedance matrices allows high-frequency current prediction. The power system is divided into functional circuits called blocks. Each passive block is modeled by an impedance matrix. A fast matrix calculation permits association of those matrices to obtain a compact model represented by an impedance matrix. Knowing the converter output voltages and the resulting impedance matrix, currents are calculated to study the influence of each passive block on high-frequency current spectrum, and so the electromagnetic interference. This will help to filter and board layout design for a given load. After presenting the general use of the method, the validation is performed on a differential Class-D audio amplifier used in cell phone applications. The practical application on a two-active conductor system validates the method up to 110 MHz
The Printed-Circuit-Board (PCB) technology is attractive for power electronic systems as it offers a low manufacturing cost for mass production. In this paper, we present a procedure to design power inductors based on PCB. These inductors either use PCB for the winding only (Planar structure), or to host both the magnetic core and the winding (Toroidal PCB structure). The design procedure compares, in the form of a Pareto fronts, the two inductor structures over a large range of parameters (geometric parameters, magnetic materials), to identify the best candidates in terms of power losses and box volume. In this procedure, the core losses are taken into account using improved Generalized Steinmetz Equation (iGSE). The skin and proximity effects are considered using the AC resistance calculated with a FEM software. The inductor feasibility is checked from a mechanical perspective using the PCB design rules and from a thermal point of view with FEM simulation. A design case is presented for a 3.3 kW multi-cellular (3 interleaved cells) Power Factor Corrector (PFC). It is found that the planar design offers the most compact solution, but might present challenges regarding thermal management. The Toroidal PCB structure tends to be larger, but easier to cool.
The aim of this paper is to predict the delivered currents at the output of an integrated audio switching amplifier for EMI prediction. Impedance matrices are used to model the different passive parts of the system. Hereafter, all the matrices are associated in a single one, where the resulting matrix and the output voltages in open circuit are used to predict the output currents spectra directly in the frequency domain. This method can be used by system designers and system integrators in order to study their systems EM emissions before assembling the different parts of the system. The experimental application of this method gives good accuracy up to 10 MHz (twenty times the switching frequency).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.