Our study was designed to contribute to an understanding of the timing and conditions under which transmission of Andes hantavirus in Oligoryzomys longicaudatus reservoir populations takes place. Mice were caged in test habitats consisting of steel drums containing holding cages, where seronegative rodents were exposed to wild seropositive individuals by freely sharing the same cage or being separated by a wire mesh. Tests were also performed for potential viral transmission to mice from excrement-tainted bedding in the cages. Andes virus transmitted efficiently; from 130 attempts with direct contact, 12.3% resulted in virus transmission. However, if we consider only those rodents that proved to be infectious, from 93 attempts we obtained 16 infected animals (17.2%). Twelve of them resulted from intraspecies O. longicaudatus encounters where male mice were differentially affected and 4 resulted from O. longicaudatus to Abrothrix olivaceus. Experiments using Abrothrix longipilis as receptors were not successful. Transmission was not observed between wire mesh-separated animals, and mice were not infected from excrement-tainted bedding. Bites seemed not to be a requisite for oral transmission. Genomic viral RNA was amplified in two out of three saliva samples from seropositive rodents, but it was not detected in urine samples obtained by vesicle puncture from two other infected rodents. Immunohistochemistry, using antibodies against Andes (AND) hantavirus proteins, revealed strong reactions in the lung and salivary glands, supporting the possibility of oral transmission. Our study suggests that AND hantavirus may be principally transmitted via saliva or saliva aerosols rather than via feces and urine.
Summary Borrelia burgdorferi sensu lato (s.l.), transmitted by Ixodes spp. ticks, is the causative agent of Lyme disease. Although Ixodes spp. ticks are distributed in both Northern and Southern Hemispheres, evidence for the presence of B. burgdorferi s.l. in South America apart from Uruguay is lacking. We now report the presence of culturable spirochetes with flat-wave morphology and borrelial DNA in endemic Ixodes stilesi ticks collected in Chile from environmental vegetation and long-tailed rice rats (Oligoryzomys longicaudatus). Cultured spirochetes and borrelial DNA in ticks were characterized by multilocus sequence typing and by sequencing five other loci (16S and 23S ribosomal genes, 5S-23S intergenic spacer, flaB, ospC). Phylogenetic analysis placed this spirochete as a new genospecies within the Lyme borreliosis group. Its plasmid profile determined by PCR and pulsed-field gel electrophoresis differed from that of B. burgdorferi B31A3. We propose naming this new South American member of the Lyme borreliosis group Borrelia chilensis VA1, in honor of its country of origin.
Murú a, R., González, L. A. and Lima, M. 2003. Population dynamics of rice rats (a Hantavirus reservoir) in southern Chile: feedback structure and non-linear effects of climatic oscillations. -Oikos 102: 137-145.We studied a fluctuating population of the long-tail rice rat (Oligoryzomys longicaudatus), the main Hantavirus vector in southern Chile, and spanning 19 years of monitoring. We determined that a first-order feedback structure and non-linear effects of Antarctic Oscillation Index (AAOI) and Southern Oscillation Index (SOI) explain 96% of the variation in annual per capita population growth rates. One important result of this study is that first-order feedback structure captures the essential features of population dynamics of long-tailed rice rats. This regulatory structure suggests that rice rats are limited by food, space or predators and regulated by intra-specific competition. The first-order dynamics observed in long-tailed rice rats strongly suggests that Hantavirus have no harmful effects on survival or reproductive processes. Besides the non-linear climatic signature in population dynamics, the periodic event of bamboo-flowering and mast seeding strongly influence rice rats population growth rates. Because of this, bamboo flowering may be used as a signal for forecasting long-tail rice rats outbreaks and for implementing information and health policies to avoid human-rodent contacts in specific areas. The observed effects of the two large-scale climatic indexes that influence climatic variability along southern Pacific Ocean, the AAOI and the SOI, emphasizes the role of considering non-linear feedback structures and climatic forces for understanding small rodent population dynamics. Because long-tailed rice rats represent the major Hantavirus reservoir in southern Chile and Argentina, we need to gain an in-depth understanding of the structure and functioning of these small rodent populations in face of the potential consequences of global change and climatic fluctuations.
A discriminant analysis on vegetational variables was performed in order to determine differences in habitat utilization by two sympatric Chilean rodents. Akodon olivaceus brachiotis is associated with vegetational variables that provide greater cover from above. Oryzomys longicaudatus philippii, on the other hand, is related with structural variables such as foliage density, which provide dense areas with thick understory that offer protection from a horizontal viewing. A clear relationship was found between shrub and herbaceous cover and length of species hindfoot.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.