Climatic changes associated with the El Niño Southern Oscillation (ENSO) can have a dramatic impact on terrestrial ecosystems worldwide, but especially on arid and semiarid systems, where productivity is strongly limited by precipitation. Nearly two decades of research, including both short‐term experiments and long‐term studies conducted on three continents, reveal that the initial, extraordinary increases in primary productivity percolate up through entire food webs, attenuating the relative importance of top‐down control by predators, providing key resources that are stored to fuel future production, and altering disturbance regimes for months or years after ENSO conditions have passed. Moreover, the ecological changes associated with ENSO events have important implications for agroecosystems, ecosystem restoration, wildlife conservation, and the spread of disease. Here we present the main ideas and results of a recent symposium on the effects of ENSO in dry ecosystems, which was convened as part of the First Alexander von Humboldt International Conference on the El Niño Phenomenon and its Global Impact (Guayaquil, Ecuador, 16–20 May 2005).
MotivationThe BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community‐led open‐source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene.Main types of variables includedThe database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record.Spatial location and grainBioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2).Time period and grainBioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year.Major taxa and level of measurementBioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.Software format.csv and .SQL.
Precipitation plays an important role in the dynamics of species found in arid and semiarid environments. However, population fluctuations generally are driven by a combination of multiple factors whose relative contribution may vary through time and among species. We monitored fluctuations of species in three trophic levels for >17 years at a semiarid community in north-central Chile. The region is strongly affected by the El Niño Southern Oscillation, resulting in high variation in rainfall that triggers dramatic changes in food resource availability, with strong effects on upper trophic levels. We focused our analyses on the role played by endogenous and exogenous (climatic) factors on the dynamics of two important rodent species in the community, Octodon degus and Phyllotis darwini. We documented population fluctuations of several orders of magnitude in response to wet and dry episodes of different strength and duration. P. darwini reached similar maximum densities, regardless of the duration of high-rainfall events, whereas O. degus showed additive effects of multiple wet years. Time series diagnostic tools revealed oscillations with a 5-year periodicity in rainfall, which may be the cause of the same periodicity and a weak second-order signal observed in the rodent dynamics. However, the dynamics of both rodent species were dominated by strong first-order processes, suggesting an important role of direct density dependence. Intraspecific competition, expressed as the ratio of rodent density/rainfall (or food resources) explained more than two-thirds of the variation in the population rate of change, whereas less than one-third was explained by lagged rainfall (or food resources). We detected no significant effects of predation. Our results contribute to a growing number of examples of dynamics governed by the combined effect of density dependence and climatic forcing. They also reveal strong bottom-up regulation that may be common in other arid environments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.