Climatic changes associated with the El Niño Southern Oscillation (ENSO) can have a dramatic impact on terrestrial ecosystems worldwide, but especially on arid and semiarid systems, where productivity is strongly limited by precipitation. Nearly two decades of research, including both short‐term experiments and long‐term studies conducted on three continents, reveal that the initial, extraordinary increases in primary productivity percolate up through entire food webs, attenuating the relative importance of top‐down control by predators, providing key resources that are stored to fuel future production, and altering disturbance regimes for months or years after ENSO conditions have passed. Moreover, the ecological changes associated with ENSO events have important implications for agroecosystems, ecosystem restoration, wildlife conservation, and the spread of disease. Here we present the main ideas and results of a recent symposium on the effects of ENSO in dry ecosystems, which was convened as part of the First Alexander von Humboldt International Conference on the El Niño Phenomenon and its Global Impact (Guayaquil, Ecuador, 16–20 May 2005).
MotivationThe BioTIME database contains raw data on species identities and abundances in ecological assemblages through time. These data enable users to calculate temporal trends in biodiversity within and amongst assemblages using a broad range of metrics. BioTIME is being developed as a community‐led open‐source database of biodiversity time series. Our goal is to accelerate and facilitate quantitative analysis of temporal patterns of biodiversity in the Anthropocene.Main types of variables includedThe database contains 8,777,413 species abundance records, from assemblages consistently sampled for a minimum of 2 years, which need not necessarily be consecutive. In addition, the database contains metadata relating to sampling methodology and contextual information about each record.Spatial location and grainBioTIME is a global database of 547,161 unique sampling locations spanning the marine, freshwater and terrestrial realms. Grain size varies across datasets from 0.0000000158 km2 (158 cm2) to 100 km2 (1,000,000,000,000 cm2).Time period and grainBioTIME records span from 1874 to 2016. The minimal temporal grain across all datasets in BioTIME is a year.Major taxa and level of measurementBioTIME includes data from 44,440 species across the plant and animal kingdoms, ranging from plants, plankton and terrestrial invertebrates to small and large vertebrates.Software format.csv and .SQL.
Although many studies employ allometric relationships to demonstrate possible dependence of various traits on body mass, the relationship between home range size and body mass has been perhaps the most difficult to understand. Early studies demonstrated that carnivorous species had larger home ranges than herbivorous species of similar mass. These studies also argued that scaling relations (e.g., slopes) of the former were steeper than those of the latter and explained this in terms of the distribution of food resources, which are more uniformly distributed for most herbivores than for carnivores. In contrast to these studies, we show that scaling relations of home ranges for carnivorous mammals do not differ significantly from those of herbivorous and omnivorous species and that all three exhibit slopes that are significantly steeper than predicted on the basis of energetic requirements. We also demonstrate that home range size is constrained to fit within a polygonal constraint space bounded by lines representing energetic and/or biophysical limitations, which suggests that the log-linear relationship between home range area and mass may not be the appropriate function to compare against the energetically predicted slopes of 0.75 or 1.0. It remains unclear, however, why the slope of the relationship between home range area and body mass, whether based on raw data or on constraint lines, always exceeds that predicted by the energetic needs hypothesis.
While horizontal gradients of biodiversity have been examined extensively in the past, vertical diversity gradients (elevation, water depth) are attracting increasing attention. We compiled data from 443 elevational gradients involving diverse organisms worldwide to investigate how elevational diversity patterns may vary between the Northern and Southern hemispheres and across latitudes. Our results show that most elevational diversity curves are positively skewed (maximum diversity below the middle of the gradient) and the elevation of the peak in diversity increases with the elevation of lower sampling limits and to a lesser extent with upper limit. Mountains with greater elevational extents, and taxonomic groups that are more inclusive, show proportionally more unimodal patterns whereas other ranges and taxa show highly variable gradients. The two hemispheres share some interesting similarities but also remarkable differences, likely reflecting differences in landmass and mountain configurations. Different taxonomic groups exhibit diversity peaks at different elevations, probably reflecting both physical and physiological constraints. Montane regions harbor more than half of the world's biodiversity hotspots and recent research on biodiversity patterns has been notable for an increase in research on elevational patterns on mountains 1 . Mountains provide unique opportunities as 'natural experiments' for testing ecological theories and in particular for studying the effects of climate change because they present gradients in key abiotic features such as temperature and available moisture. Recent efforts have generated interesting and sometimes conflicting results, and debates on the generality of the frequently observed unimodal (''hump-shaped'' 2 ) curves and the underlying mechanisms have not been fully resolved. Indeed, despite increased research in this area in recent years, employing markedly improved techniques and greater sampling intensity, much inconsistency and debate remains both in pattern description and interpretation. For example, surprisingly little effort has targeted how elevational diversity patterns might vary in the Northern and Southern hemispheres and across latitudinal zones [3][4][5][6][7] . To tackle these problems, detailed comparisons are needed over distinct (replicate) elevational gradients across the globe.The upper elevational limit for phanerogams varies as a function of latitude and generally reflects limits to physiologic tolerance 1 . Moreover, similar elevational ranges in different regions are likely to exhibit different underlying gradients 8 , reflecting regional climate and geography; cold-temperate mountains lack the warm climate characteristic of lower elevations at lower latitudes, and temperatures at a tropical treeline might reflect those at the base of cold-temperate mountains. Additionally, the effect of aspect is greatly reduced on tropical mountains relative to temperate ones. As a result of these latitudinal differences, structurally identical mountains locate...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.