Climatic changes associated with the El Niño Southern Oscillation (ENSO) can have a dramatic impact on terrestrial ecosystems worldwide, but especially on arid and semiarid systems, where productivity is strongly limited by precipitation. Nearly two decades of research, including both short‐term experiments and long‐term studies conducted on three continents, reveal that the initial, extraordinary increases in primary productivity percolate up through entire food webs, attenuating the relative importance of top‐down control by predators, providing key resources that are stored to fuel future production, and altering disturbance regimes for months or years after ENSO conditions have passed. Moreover, the ecological changes associated with ENSO events have important implications for agroecosystems, ecosystem restoration, wildlife conservation, and the spread of disease. Here we present the main ideas and results of a recent symposium on the effects of ENSO in dry ecosystems, which was convened as part of the First Alexander von Humboldt International Conference on the El Niño Phenomenon and its Global Impact (Guayaquil, Ecuador, 16–20 May 2005).
Since 1989, we have conducted a large-scale ecological experiment in semiarid thorn scrub of a national park in north-central Chile. Initially, we focused on the role of biotic interactions including predation, interspecific competition, and herbivory in small mammal and plant components of the community. We utilized a reductionist approach with replicated 0.56 ha fenced grids that selectively excluded vertebrate predators and/or larger small mammal herbivores such as the degu, Octodon degus. Although we detected small transitory effects of predator exclusions on degu survival and numbers, other species failed to show responses. Similarly, interspecific competition (i.e., degus with other small mammals) had no detectable numerical effects (although some behavioral responses occurred), and degu-exclusions had relatively small effects on various plant components. Modeling approaches indicate that abiotic factors play a determining role in the dynamics of principal small mammal species such as O. degus and the leaf-eared mouse (Phyllotis darwini). In turn, these are mainly related to aperiodic pulses of higher rainfall (usually during El Niño events) which trigger ephemeral plant growth; a food addition experiment in 1997-2000 verified the importance of precipitation as a determinant of food availability. Since 2004, we have expanded long-term monitoring efforts to other important community components including birds and insects in order to understand effects of abiotic factors on them; we report some of the first results of comprehensive surveys on the former in this region. Finally, we recently shifted focus to documenting effects of exotic lagomorphs in the park. We installed additional treatments selectively excluding small mammals, lagomorphs, or both, from replicated grids in order to evaluate putative herbivore impacts. In conjunction with increased annual rainfall since 2000, we predict that introduced lagomorphs will have increasing impacts in this region, and that more frequent El Niños in conjunction with global climatic change may lead to marked changes in community dynamics. The importance of long-term experimental studies is underscored by the fact that only now after 20 years of work are some patterns becoming evident.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.