Let X be the circle bundle associated to a positive line bundle on a complex projective (or, more generally, compact symplectic) manifold. The Tian-Zelditch expansion on X may be seen as a local manifestation of the decomposition of the (generalized) Hardy space H(X) into isotypes for the S 1 -action. More generally, given a compatible action of a compact Lie group, and under general assumptions guaranteeing finite dimensionality of isotypes, we may look for asymptotic expansions locally reflecting the equivariant decomposition of H(X) over the irreducible representations of the group. We focus here on the case of compact tori.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.