International audienceSecurity and reliability are major concerns for future power systems with distributed generation. A comprehensive evaluation of the risk associated with these systems must consider contingencies under normal environmental conditions and also extreme ones. Environmental conditions can strongly influence the operation and performance of distributed generation systems, not only due to the growing shares of renewable-energy generators installed but also for the environment-related contingencies that can damage or deeply degrade the components of the power grid. In this context, the main novelty of this paper is the development of probabilistic risk assessment and risk-cost optimization framework for distributed power generation systems, that take the effects of extreme weather conditions into account. A Monte Carlo non-sequential algorithm is used for generating both normal and severe weather. The probabilistic risk assessment is embedded within a risk-based, bi-objective optimization to find the optimal size of generators distributed on the power grid that minimize both risks and cost associated with severe weather. An application is shown on a case study adapted from the IEEE 13 nodes test system. By comparing the results considering normal environmental conditions and the results considering the effects of extreme weather, the relevance of the latter clearly emerges
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.