This study presents the first comprehensive genetic analyses of common bottlenose dolphin (Tursiops truncatus) based on mitochondrial DNA and microsatellite loci in the Wider Caribbean. Live captures of bottlenose dolphins have been occurring since the turn of the 20th century in Wider Caribbean waters where little is known about their population structure and genetic diversity. In this study, blood or tissue samples were obtained from stranded or captive dolphins from nine geographic regions. One hundred fifty-eight sequences of the mitochondrial DNA control region and nine microsatellite loci were analyzed and compared with previously published sequences. This study revealed the presence of 'inshore' ecotype and 'worldwide distributed form' haplotypes of bottlenose dolphins in Wider Caribbean waters. At the mitochondrial level, genetic differentiation between these two groups was significant (FST = 0.805, P < 0.001). Analyses of mitochondrial DNA sequences at a wider geographic level revealed three genetically differentiated (FST = 0.254, FST = 0.590, P < 0.001) population units: Puerto Rico, Cuba/Colombia/Bahamas/Mexico, and Honduras. There was evidence of low female-mediated gene flow among these population units (Nmf = 1.46). Microsatellite analyses identified four somewhat different population units: Honduras/Colombia/Puerto Rico, Bahamas, Cuba and Mexico. The presence of 'worldwide distributed form' and 'inshore' ecotype haplotypes in particular population units, may be causing differences in the population structure pattern showed by each molecular marker. Decreased observed heterozygosity and three loci out of the Hardy-Weinberg equilibrium were found in the Honduras/Colombia/Puerto Rico population unit suggesting a Wahlund effect. The genetic differentiation and divergence between the two forms identified in this study must be taken into consideration for captive programs that aim to reproduce bottlenose dolphins from this region. Although genetic diversity at the mitochondrial and microsatellite level in these dolphins seems to be relatively high, additional demographic and abundance data must be obtained before more captures are allowed. Animal Conservation. Print ISSN 1367-9430 Animal Conservation 15 (2012) 95-112 Phylogeography of bottlenose dolphins in the Caribbean S. Caballero et al. 96 Animal Conservation 15 (2012) 95-112 Animal Conservation 15 (2012) 95-112
Urinalysis is a rapid, simple, inexpensive, and reliable test that documents urine abnormalities reflecting various types of renal, hormonal, or metabolic diseases. Urinalysis could assist proper monitoring of the health of dolphins under human care; however, normal baseline values for dolphin urinalysis have not been reported, to our knowledge. We sampled urine from 193 common bottlenose dolphins (Tursiops truncatus), living under human care in 24 Caribbean dolphinariums, by voluntary free-catch and analyzed the urine for chemical and microscopic variables using multi-agent dry reagent chemistry dipstick test strips, dedicated pH reagent strips, and unstained sediment slides. Most urine was clear, pale yellow to dark yellow, and had a fishy odor. Dipstick glucose, bilirubin, ketones, and nitrites were negative in all dolphins. The urine pH was acidic (x ± SD; 5.88 ± 0.58) and specific gravity (SG) was 1.035 ± 0.008. Most animals had 0-2 red blood cells and white blood cells per 40× field, and were negative for proteins. On microscopic sediment, 42.7% of samples had few-to-many squamous epithelial cells; hyaline and epithelial casts were observed only rarely. Crystals were observed in 36.6% of the samples; most were calcium oxalate dihydrate (48.2%) and amorphous urates (42.4%). The values obtained in our study can be used as a reference for health monitoring of dolphins in dolphinariums, and to monitor renal conditions and function in dolphins being rehabilitated or under human care.
OBJECTIVE
To describe results of analysis of free-catch urine samples collected from Antillean manatees (Trichechus manatus manatus) under human care in the Caribbean.
ANIMALS
32 Antillean manatees in 5 Caribbean oceanaria and rescue centers.
PROCEDURES
Urine samples were obtained by opportunistic free catch during physical examination or through the use of operant conditioning procedures. Urinalyses consisted of macro- and microscopic evaluations, biochemical analyses with test strips, and refractometry. Results were compared for manatees grouped on the basis of age, sex, and habitat.
RESULTS
Urine samples were typically clear, straw colored, and alkaline (mean pH, 8.0); had a urinoid odor and low specific gravity (mean, 1.010); and had results on qualitative test strips that were consistently negative for the presence of glucose, bilirubin, ketones, proteins, nitrites, RBCs, and WBCs. Microscopically, the mean ± SD number of RBCs and WBCs/hpf was 0.5 ± 0.3 RBCs/hpf and 1.1 ± 1.5 WBCs/hpf. The presence of some epithelial cells and crystals was typical. Spermatozoa were found in urine from 1 of 15 sexually mature males, and parasite larvae and eggs were found in urine from 2 manatees.
CONCLUSIONS AND CLINICAL RELEVANCE
Results of the present study yielded the first compilation of baseline urinalysis values in healthy Antillean manatees under human care, which, when combined with physical examination and other diagnostic procedures, can help in monitoring the health of these animals. We encourage the use of free-catch urine collection methods, as used in the present study, for routine urinalyses of manatees under human care in zoos, aquaria, or rescue centers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.