The concept of turbidite has evolved so much since its original definition by Kuenen and Migliorini in 1950 -i.e. the deposit of turbidity currents exemplified by the sandy flysch successions of the Northern Apennines -that it is now used to define a variety of deposits, some of which have little in common with sandy flysch formations in terms of facies, geometry and geological significance. The extension of the concept to other geodynamic settings and deposits of nonsiliciclastic composition is considered only briefly in the concluding sections.With the diffusion of the concept of turbidity current, in the 1950s and early 1960s, an entirely new branch of sedimentology came into being, concerned with the inventory of sedimentary structures, palaeocurrent measurements and bedding patterns. The most representative expression of this branch came from the 'Dutch school' of Philip H. Kuenen and his students. Between the late 1960s and the mid-1970s, there was a new development: facies analysis, in terms of modern environments and depositional systems. This development led to the introduction and discussion of 'fan models' that became an increasingly thorny issue with the accumulation of data from modern deepmarine settings. In particular, most researchers emphasized the importance of channel and lobe elements and their mutual relationships in space and time. These models may differ in terms of specific features, e.g. canyon-fed versus delta-fed ramp settings and terminology, but the basic distinction between channels (sediment pathways), lobes and basin plains (sheet-like depositional features) was and still is widely retained -a model that simply refers to a system where a distributary channel passes downstream to a depositional zone, like in most fluvio-deltaic systems. Great caution should, however, be exercised when comparing modern and ancient fans -a problem discussed at length in the Committee on Submarine Fans I convened by A.H. Bouma and held in Pittsburgh in 1982. Different data sets and geological contexts, scaling problems and terminology still cast doubt over how meaningful such a comparison may be. Despite the many problems encountered, the elemental approach provides an easy, essentially descriptive tool to significantly compare recent with ancient, recent with recent, and ancient with ancient systems.Beginning in the 1970s, process-oriented facies analysis led to increasingly complex facies classification schemes, which showed substantial departures from the classic Bouma sequence and introduced many new concepts: proximal versus distal sedimentation, sediment bypass and flow efficiency, in addition to deflection, reflection and ponding of turbidity currents in confined basins. During the last two decades, there has been an increased interest in attempting to interpret the incredibly detailed submarine landscapes obtained through advances in marine geology, technology and Sedimentology