The new modifications introduced in the T1D simulator allow to extend its domain of validity from "single-meal" to "single-day" scenarios, thus enabling a more realistic framework for in silico testing of advanced diabetes technologies including glucose sensors, new insulin molecules and artificial pancreas.
OBJECTIVETo evaluate the feasibility of a wearable artificial pancreas system, the Diabetes Assistant (DiAs), which uses a smart phone as a closed-loop control platform.RESEARCH DESIGN AND METHODSTwenty patients with type 1 diabetes were enrolled at the Universities of Padova, Montpellier, and Virginia and at Sansum Diabetes Research Institute. Each trial continued for 42 h. The United States studies were conducted entirely in outpatient setting (e.g., hotel or guest house); studies in Italy and France were hybrid hospital–hotel admissions. A continuous glucose monitoring/pump system (Dexcom Seven Plus/Omnipod) was placed on the subject and was connected to DiAs. The patient operated the system via the DiAs user interface in open-loop mode (first 14 h of study), switching to closed-loop for the remaining 28 h. Study personnel monitored remotely via 3G or WiFi connection to DiAs and were available on site for assistance.RESULTSThe total duration of proper system communication functioning was 807.5 h (274 h in open-loop and 533.5 h in closed-loop), which represented 97.7% of the total possible time from admission to discharge. This exceeded the predetermined primary end point of 80% system functionality.CONCLUSIONSThis study demonstrated that a contemporary smart phone is capable of running outpatient closed-loop control and introduced a prototype system (DiAs) for further investigation. Following this proof of concept, future steps should include equipping insulin pumps and sensors with wireless capabilities, as well as studies focusing on control efficacy and patient-oriented clinical outcomes.
OBJECTIVEThe Pediatric Artificial Pancreas (PedArPan) project tested a children-specific version of the modular model predictive control (MMPC) algorithm in 5-to 9-yearold children during a camp.
RESEARCH DESIGN AND METHODSA total of 30 children, 5-to 9-years old, with type 1 diabetes completed an outpatient, open-label, randomized, crossover trial. Three days with an artificial pancreas (AP) were compared with three days of parent-managed sensoraugmented pump (SAP).
RESULTSOvernight time-in-hypoglycemia was reduced with the AP versus SAP, median (25 th -75 th percentiles): 0.0% (0.0-2.2) vs. 2.2% (0.0-12.3) (P 5 0.002), without a significant change of time-in-target, mean: 56.0% (SD 22.5) vs. 59.7% (21.2) (P 5 0.430), but with increased mean glucose 173 mg/dL (36) vs. 150 mg/dL (39) (P 5 0.002). Overall, the AP granted a threefold reduction of time-in-hypoglycemia (P < 0.001) at the cost of decreased time-in-target, 56.8% (13.5) vs. 63.1% (11.0) (P 5 0.022) and increased mean glucose 169 mg/dL (23) vs. 147 mg/dL (23) (P < 0.001).
CONCLUSIONSThis trial, the first outpatient single-hormone AP trial in a population of this age, shows feasibility and safety of MMPC in young children. Algorithm retuning will be performed to improve efficacy.Only three artificial pancreas (AP) trials have focused on the prepubertal population so far: two single-hormone AP studies, performed inpatient for less than 1 day (1,2) and a recent dual-hormone AP study, performed in a camp for 5 days (3). Here we report the first outpatient single-hormone AP trial focusing on 5-to 9-year-old children.Data were collected in the Pediatric Artificial Pancreas (PedArPan) camp, where sensor-augmented pump (SAP) therapy was compared with the modular model predictive control algorithm (MMPC) (4,5), running on the wearable platform Diabetes Assistant (DiAs) (6).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.