Several models are available in literature to simulate ground heat exchangers. In this paper an approach\ud
based on electrical analogy is presented, for this reason named CaRM (CApacity Resistance Model). In\ud
some cases several information are needed during design: both the borehole and the surrounding\ud
ground are affected by thermal exchange. The model here presented allows to consider the fluid flow\ud
pattern along the classical vertical ground heat exchangers as a single U-tube, a double U-tube or\ud
coaxial pipes. Besides, ground temperature at different distances from borehole are calculated, taking\ud
into account also the thermal interference between more boreholes. Starting from the supply\ud
temperature to the heat exchanger, the outlet fluid temperature is calculated and the ground\ud
temperature in each node, step by step. The model has been validated by means of a commercial\ud
software based on the finite differences method. Further comparisons have been carried out against\ud
data from a ground thermal response test and from the survey of an office building equipped with\ud
a ground coupled heat pump and vertical double U-tube heat exchangers. The agreement of results\ud
validates the model here presented
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.