Meteorites contain a record of their thermal and magnetic history, written in the intergrowths of iron-rich and nickel-rich phases that formed during slow cooling. Of intense interest from a magnetic perspective is the “cloudy zone,” a nanoscale intergrowth containing tetrataenite—a naturally occurring hard ferromagnetic mineral that has potential applications as a sustainable alternative to rare-earth permanent magnets. Here we use a combination of high-resolution electron diffraction, electron tomography, atom probe tomography (APT), and micromagnetic simulations to reveal the 3D architecture of the cloudy zone with subnanometer spatial resolution and model the mechanism of remanence acquisition during slow cooling on the meteorite parent body. Isolated islands of tetrataenite are embedded in a matrix of an ordered superstructure. The islands are arranged in clusters of three crystallographic variants, which control how magnetic information is encoded into the nanostructure. The cloudy zone acquires paleomagnetic remanence via a sequence of magnetic domain state transformations (vortex to two domain to single domain), driven by Fe–Ni ordering at 320 °C. Rather than remanence being recorded at different times at different positions throughout the cloudy zone, each subregion of the cloudy zone records a coherent snapshot of the magnetic field that was present at 320 °C. Only the coarse and intermediate regions of the cloudy zone are found to be suitable for paleomagnetic applications. The fine regions, on the other hand, have properties similar to those of rare-earth permanent magnets, providing potential routes to synthetic tetrataenite-based magnetic materials.
Metallic phases in the Tazewell IIICD iron and Esquel pallasite meteorites were examined using 57Fe synchrotron Mössbauer spectroscopy. Spatial resolution of ~10–20 μm was achieved, together with high throughput, enabling individual spectra to be recorded in less than 1 h. Spectra were recorded every 5–10 μm, allowing phase fractions and hyperfine parameters to be traced along transects of key microstructural features. The main focus of the study was the transitional region between kamacite and plessite, known as the “cloudy zone.” Results confirm the presence of tetrataenite and antitaenite in the cloudy zone as its only components. However, both phases were also found in plessite, indicating that antitaenite is not restricted exclusively to the cloudy zone, as previously thought. The confirmation of paramagnetic antitaenite as the matrix phase of the cloudy zone contrasts with recent observations of a ferromagnetic matrix phase using X‐ray photoemission electron spectroscopy. Possible explanations for the different results seen using these techniques are proposed.
Iron and stony‐iron meteorites form the Widmanstätten pattern during slow cooling. This pattern is composed of several microstructures whose length‐scale, composition and magnetic properties are dependent upon cooling rate. Here we focus on the cloudy zone: a region containing nanoscale tetrataenite islands with exceptional paleomagnetic recording properties. We present a systematic review of how cloudy zone properties vary with cooling rate and proximity to the adjacent tetrataenite rim. X‐ray photoemission electron microscopy is used to compare compositional and magnetization maps of the cloudy zone in the mesosiderites (slow cooling rates), the IAB iron meteorites and the pallasites (intermediate cooling rates), and the IVA iron meteorites (fast cooling rates). The proportions of magnetic phases within the cloudy zone are also characterized using Mössbauer spectroscopy. We present the first observations of the magnetic state of the cloudy zone in the mesosiderites, showing that, for such slow cooling rates, tetrataenite islands grow larger than the multidomain threshold, creating large‐scale regions of uniform magnetization across the cloudy zone that render it unsuitable for paleomagnetic analysis. For the most rapidly cooled IVA meteorites, the time available for Fe‐Ni ordering is insufficient to allow tetrataenite formation, again leading to behavior that is unsuitable for paleomagnetic analysis. The most reliable paleomagnetic remanence is recorded by meteorites with intermediate cooling rates ( ∼ 2–500 °C Myr −1) which produces islands that are “just right” in both size and degree of Fe‐Ni order.
Advanced in situ techniques based on electrons and X-rays are increasingly used to gain insights into fundamental processes in liquids. However, probing liquid samples with ionizing radiation changes the solution chemistry under observation. In this work, we show that a radiation-induced decrease in pH does not necessarily correlate to an increase in acidity of aqueous solutions. Thus, pH does not capture the acidity under irradiation. Using kinetic modeling of radiation chemistry, we introduce alternative measures of acidity (radiolytic acidity π* and radiolytic ion product K W*), that account for radiation-induced alterations of both H+ and OH– concentration. Moreover, we demonstrate that adding pH-neutral solutes such as LiCl, LiBr, or LiNO3 can trigger a significant change in π*. This provides a huge parameter space to tailor the acidity for in situ experiments involving ionizing radiation, as present in synchrotron facilities or during liquid-phase electron microscopy.
Stable paleomagnetic information in meteoritic metal is carried by the “cloudy zone”: ~1–10 μm‐wide regions containing islands of ferromagnetic tetrataenite embedded in a paramagnetic antitaenite matrix. Due to their small size and high coercivity (theoretically up to ~2.2 T), the tetrataenite islands carry very stable magnetic remanence. However, these characteristics also make it difficult to image their magnetic state with the necessary spatial resolution and applied magnetic field. Here, we describe the first application of X‐ray holography to image the magnetic structure of the cloudy zone of the Tazewell IIICD meteorite with spatial resolution down to ~40 nm and in applied magnetic fields up to ±1.1 T, sufficient to extract high‐field hysteresis data from individual islands. Images were acquired as a function of magnetic field applied both parallel and perpendicular to the surface of a ~100 nm‐thick slice of the cloudy zone. Broad distributions of coercivity are observed, including values that likely exceed the maximum applied field. Horizontal offsets in the hysteresis loops indicate an interaction field distribution with half width of ~100 mT between the islands in their room temperature single‐domain state, providing a good match to first‐order reversal curve diagrams. The results suggest that future models of remanence acquisition in the cloudy zone should take account of strong interactions in order to extract quantitative estimates of the paleofield.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.