The Lovász Local Lemma [EL75] is a powerful tool to non-constructively prove the existence of combinatorial objects meeting a prescribed collection of criteria. In his breakthrough paper [Bec91], Beck demonstrated that a constructive variant can be given under certain more restrictive conditions. Simplifications of his procedure and relaxations of its restrictions were subsequently exhibited in several publications [Alo91, MR98, CS00, Mos06, Sri08, Mos08]. In [Mos09], a constructive proof was presented that works under negligible restrictions, formulated in terms of the Bounded Occurrence Satisfiability problem. In the present paper, we reformulate and improve upon these findings so as to directly apply to almost all known applications of the general Local Lemma.
The Lovász Local Lemma [EL75] is a powerful tool to prove the existence of combinatorial objects meeting a prescribed collection of criteria. The technique can directly be applied to the satisfiability problem, yielding that a k-CNF formula in which each clause has common variables with at most 2 k−2 other clauses is always satisfiable. All hitherto known proofs of the Local Lemma are non-constructive and do thus not provide a recipe as to how a satisfying assignment to such a formula can be efficiently found. ). In the present paper, we give a randomized algorithm that finds a satisfying assignment to every k-CNF formula in which each clause has a neighbourhood of at most the asymptotic optimum of 2 k−5 − 1 other clauses and that runs in expected time polynomial in the size of the formula, irrespective of k. If k is considered a constant, we can also give a deterministic variant. In contrast to all previous approaches, our analysis does not anymore invoke the standard non-constructive versions of the Local Lemma and can therefore be considered an alternative, constructive proof of it.
Schöning [7] presents a simple randomized algorithm for k-SAT with running time O(a n k poly(n)) for a k = 2(k − 1)/k. We give a deterministic version of this algorithm running in time O((a k + ǫ) n poly(n)), where ǫ > 0 can be made arbitrarily small.
Abstract. We consider boolean formulas in conjunctive normal form (CNF). If all clauses are large, it needs many clauses to obtain an unsatisfiable formula; moreover, these clauses have to interleave. We review quantitative results for the amount of interleaving required, many of which rely on the Lovász Local Lemma, a probabilistic lemma with many applications in combinatorics.In positive terms, we are interested in simple combinatorial conditions which guarantee for a CNF formula to be satisfiable. The criteria obtained are nontrivial in the sense that even though they are easy to check, it is by far not obvious how to compute a satisfying assignment efficiently in case the conditions are fulfilled; until recently, it was not known how to do so. It is also remarkable that while deciding satisfiability is trivial for formulas that satisfy the conditions, a slightest relaxation of the conditions leads us into the territory of NP-completeness.Several open problems remain, some of which we mention in the concluding section.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.