In December 2018, at the conclusion of its second implementation phase, the Global Earthquake Model (GEM) Foundation released its first version of a map outlining the spatial distribution of seismic hazard at a global scale. The map is the result of an extensive, joint effort combining the results obtained from a collection of probabilistic seismic hazard models, called the GEM Mosaic. Together, the map and the underlying database of models provide an up-to-date view of the earthquake threat globally. In addition, using the Mosaic, a synopsis of the current state-of-practice in modeling probabilistic seismic hazard at national and regional scales is possible. The process adopted for the compilation of the Mosaic adhered to the maximum extent possible to GEM’s principles of collaboration, inclusiveness, transparency, and reproducibility. For each region, priority was given to seismic hazard models either developed by well-recognized national agencies or by large collaborative projects involving local scientists. The version of the GEM Mosaic presented herein contains 30 probabilistic seismic hazard models, 14 of which represent national or sub-national models; the remainder are regional-scale models. We discuss the general qualities of these models, the underlying framework of the database, and the outlook for the Mosaic’s utility and its future versions.
In recent years, new approaches for developing earthquake rupture forecasts (ERFs) have been proposed to be used as an input for probabilistic seismic hazard assessment (PSHA). Zone- based approaches with seismicity rates derived from earthquake catalogs are commonly used in many countries as the standard for national seismic hazard models. In Italy, a single zone- based ERF is currently the basis for the official seismic hazard model. In this contribution, we present eleven new ERFs, including five zone-based, two smoothed seismicity-based, two fault- based, and two geodetic-based, used for a new PSH model in Italy. The ERFs were tested against observed seismicity and were subject to an elicitation procedure by a panel of PSHA experts to verify the scientific robustness and consistency of the forecasts with respect to the observations. Tests and elicitation were finalized to weight the ERFs. The results show a good response to the new inputs to observed seismicity in the last few centuries. The entire approach was a first attempt to build a community-based set of ERFs for an Italian PSHA model. The project involved a large number of seismic hazard practitioners, with their knowledge and experience, and the development of different models to capture and explore a large range of epistemic uncertainties in building ERFs, and represents an important step forward for the new national seismic hazard model.
<p>We perform aftershock probabilistic seismic hazard analysis (APSHA) of the ongoing aftershock sequence following the Amatrice August 24th, 2016 Central Italy earthquake. APSHA is a time-dependent PSHA calculation where earthquake occurrence rates decrease after the occurrence of a mainshock following an Omori-type decay. In this paper we propose a fault source model based on preliminary evidence of the complex fault geometry associated with the mainshock. We then explore the possibility that the aftershock seismicity is distributed either uniformly or non-uniformly across the fault source. The hazard results are then computed for short-intermediate exposure periods (1-3 months, 1 year). They are compared to the background hazard and intended to be useful for post-earthquake safety evaluation.</p>
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.