Organic nanowires are important building blocks for nanoscopic organic electronic devices. In order to ensure efficient charge transport through such nanowires, it is important to understand in detail the molecular parameters that guide self-assembly of π-conjugated molecules into one-dimensional stacks with optimal constructive π-π overlap. Here, we investigated the subtle relationship between molecular structure and supramolecular arrangement of the chromophores in self-assembled nanowires prepared from perylene bisimides with oligopeptide-polymer side chains. We observed a "two-fold" odd-even effect in circular dichroism spectra of these derivatives, depending on both the number of l-alanine units in the oligopeptide segments and length of the alkylene spacer between chromophore and oligopeptide substituents. Our results indicate that there is a complex interplay between the translation of molecular chirality into supramolecular helicity and the molecules' inherent propensity for well-defined one-dimensional aggregation into β-sheet-like superstructures in the presence of a central chromophore. Strong excitonic coupling as expressed by the appearance of hypsochromically and bathochromically shifted UV-vis absorptions and strong CD signals was systematically observed for molecules with an odd number of l-alanines in the side chains. The latter derivatives gave rise to nanowires with a significantly higher electron mobility. Our results, hence, provide an important design rule for self-assembled organic nanowires.
Even though many studies on the field cycling behavior of ferroelectric hafnium oxide have recently been published, the issue is still not fully understood. The initial increase of polarization during first cycles is explained by different theoretical and empirical approaches. Field-induced phase changes as well as oxygen vacancy diffusion from interfacial layers toward the bulk are discussed. Trapped charges as well as the mentioned oxygen vacancy diffusion might cause a shift of the hysteresis along the voltage axis called imprint. Even though various studies connect this effect to charge diffusion with progression of cycling, a final experimental proof for the origin of wakeup and imprint is still missing. Based on the comprehensive comparative study of hafnia-zirconia and iron-doped lead zirconate titanate ferroelectrics, it is verified that the diffusion of oxygen vacancies is the main cause for both imprint and wake-up. Moreover, it is shown that a local seed inhibition of ferroelectric domains is most likely responsible for the reduced ferroelectric response in pristine state.
Some oxygen defective metal oxides, such as cerium and bismuth oxides, have recently shown exceptional electrostrictive properties that are even superior to the best performing lead-based electrostrictors, e.g. lead-magnesium-niobates (PMN). Compared to piezoelectric ceramics, electromechanical mechanisms of such materials do not depend on crystalline symmetry, but on the concentration of oxygen vacancy (V O •• ) in the lattice. In this work, we investigate for the first time the role of oxygen defect configuration on the electro-chemomechanical properties. This is achieved by tuning the oxygen defects blocking barrier density in polycrystalline gadolinium doped ceria with known oxygen vacancy concentration, Ce0.9Gd0.1O2-δ, δ = 0.05. Nanometric starting powders of ca. 12 nm are sintered in different conditions, including field assisted spark plasma sintering (SPS), fast firing and conventional method at high temperatures. These approaches allow controlling grain size and Gd-dopant diffusion, i.e. via thermally driven solute drag mechanism. By correlating the electro-chemomechanical properties, we show that oxygen vacancy distribution in the materials play a key role in ceria electrostriction, overcoming the expected contributions from grain size and dopant concentration.
The discovery of the ferroelectric orthorhombic phase in doped hafnia films has sparked immense research efforts. Presently, a major obstacle for hafnia's use in high‐endurance memory applications like nonvolatile random‐access memories is its unstable ferroelectric response during field cycling. Different mechanisms are proposed to explain this instability including field‐induced phase change, electron trapping, and oxygen vacancy diffusion. However, none of these is able to fully explain the complete behavior and interdependencies of these phenomena. Up to now, no complete root cause for fatigue, wake‐up, and imprint effects is presented. In this study, the first evidence for the presence of singly and doubly positively charged oxygen vacancies in hafnia–zirconia films using thermally stimulated currents and impedance spectroscopy is presented. Moreover, it is shown that interaction of these defects with electrons at the interfaces to the electrodes may cause the observed instability of the ferroelectric performance.
The accurate evaluation of ferroelectric thin films operated with interdigitated electrodes is quite a complex task. In this article, we show how to correct the electric field and the capacitance in order to obtain identical polarization and CV loops for all geometrical variants. The simplest model is compared with corrections derived from Schwartz-Christoffel transformations, and with finite element simulations. The correction procedure is experimentally verified, giving almost identical curves for a variety of gaps and electrode widths. It is shown that the measured polarization change corresponds to the average polarization change in the center plane between the electrode fingers, thus at the position where the electric field is most homogeneous with respect to the direction and size. The question of maximal achievable polarization in the various possible textures, and compositional types of polycrystalline lead zirconate titanate thin films is revisited. In the best case, a soft (110) textured thin film with the morphotropic phase boundary composition should yield a value of 0.95Ps, and in the worst case, a rhombohedral (100) textured thin film should deliver a polarization of 0.74Ps.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.