Data access throughput is one of the key performance metrics in scientific computing, particularly for distributed data-intensive applications. While there has been a body of studies focusing on elephant connections that consume a significant fraction of network bandwidth, this study focuses on predicting slow connections that create bottlenecks in distributed workflows. In this study, we analyze network traffic logs collected between January 2019 and May 2021 at National Energy Research Scientific Computing Center (NERSC). Based on the observed patterns from this data collection, we define a set of features to be used for identifying low-performing data transfers. Through extensive feature engineering and feature selection, we identify a number of new features to significantly enhance the prediction performance. With these new features, even the relatively simple decision tree model could predict slow connections with a F1 score as high as 0.945.
Scientific computing heavily relies on data shared by the community, especially in distributed data-intensive applications. This research focuses on predicting slow connections that create bottlenecks in distributed workflows. In this study, we analyze network traffic logs collected between January 2021 and August 2022 at the National Energy Research Scientific Computing Center (NERSC). Based on the observed patterns, we define a set of features primarily based on history for identifying low-performing data transfers. Typically, there are far fewer slow connections on well-maintained networks, which creates difficulty in learning to identify these abnormally slow connections from the normal ones. We devise several stratified sampling techniques to address the class-imbalance challenge and study how they affect the machine learning approaches. Our tests show that a relatively simple technique that undersamples the normal cases to balance the number of samples in two classes (normal and slow) is very effective for model training. This model predicts slow connections with an F1 score of 0.926.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.