Research of deep learning algorithms, especially in the field of convolutional neural networks (CNN), has shown significant progress. The application of CNNs in image analysis and pattern recognition has earned a lot of attention in this regard and few applications to classify a small number of common taxa in marine image collections have been reported yet. In this paper, we address the problem of class imbalance in marine image data, i.e. the common observation that 80%-90% of the data belong to a small subset of L classes among the total number of L observed classes, with L << L. A small number of methods to compensate for the class imbalance problem in the training step have been proposed for the common computer vision benchmark datasets. But marine image collections (showing for instance megafauna as considered in this study) pose a greater challenge as the observed imbalance is more extreme as habitats can feature a high biodiversity but a low species density. In this paper, we investigate the potential of various over-/undersampling methods to compensate for the class imbalance problem in marine imaging. In addition, five different balancing rules are proposed and analyzed to examine the extent to which sampling should be used, i.e. how many samples should be created or removed to gain the most out of the sampling algorithms. We evaluate these methods with AlexNet trained for classifying benthic image data recorded at the Porcupine Abyssal Plain (PAP) and use a Support Vector Machine as baseline classifier. We can report that the best of our proposed strategies in combination with data augmentation applied to AlexNet results in an increase of thirteen basis points compared to AlexNet without sampling. Furthermore, examples are presented, which show that the combination of oversampling and augmentation leads to a better generalization than pure augmentation.
Abstract. The expansion of off-/onshore wind farms plays a key role in the transformation of energy production from burning of fossil fuels and nuclear energy to sustainable and safe power generation. However, the wind energy sector is permanently under strong cost pressure and the maintenance of the turbines is currently still carried out quite expensively with human industrial climbers. In this article, we present the results of an interdisciplinary research project on the automation of various image-based inspection steps. Since the use of unmanned aerial vehicles (UAV) is a problem especially offshore, we present here a simple, cost-effective method to obtain a three-dimensional model of a wind energy plant using solely a digital camera equipped with a sensor array to use it for the detection and management of damages and abnormalities. A first approach to detect abnormalities on the surface with deep learning methods achieved an F1-score of about 95%.
Abstract. Wind energy is a critical part of overcoming the use of fossil or nuclear energy usage. The price pressure on the renewable industry sector demands to cut the costs for costly regular inspections carried out by industrial climbers. Drone-based video-inspection reduces costs as well as increases the safety of inspection personal. To further increase the throughput, automatic or semi-automatic solutions to analyze these videos are needed. However, modern machine learning architectures need a lot of data to work reliably. This is by design a problem, as structural damage is rather rare in industrial infrastructure. Our proposed approach uses Generative Adversarial Networks to generate synthetic unmanned aerial vehicle imagery. This allows us to create a large enough training dataset (> 103) from a dataset, which is at least an order of magnitude smaller (approx. 102). We show that we can increase the classification accuracy of up to 6 percentage points.
Fixed underwater observatories (FUO), equipped with digital cameras and other sensors, become more commonly used to record different kinds of time series data for marine habitat monitoring. With increasing numbers of campaigns, numbers of sensors and campaign time, the volume and heterogeneity of the data, ranging from simple temperature time series to series of HD images or video call for new data science approaches to analyze the data. While some works have been published on the analysis of data from one campaign, we address the problem of analyzing time series data from two consecutive monitoring campaigns (starting late 2017 and late 2018) in the same habitat. While the data from campaigns in two separate years provide an interesting basis for marine biology research, it also presents new data science challenges, like the the marine image analysis in data form more than one campaign. In this paper, we analyze the polyp activity of two Paragorgia arborea cold water coral (CWC) colonies using FUO data collected from November 2017 to June 2018 and from December 2018 to April 2019. We successfully apply convolutional neural networks (CNN) for the segmentation and classification of the coral and the polyp activities. The result polyp activity data alone showed interesting temporal patterns with differences and similarities between the two time periods. A one month “sleeping” period in spring with almost no activity was observed in both coral colonies, but with a shift of approximately one month. A time series prediction experiment allowed us to predict the polyp activity from the non-image sensor data using recurrent neural networks (RNN). The results pave a way to a new multi-sensor monitoring strategy for Paragorgia arborea behaviour.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.