Rotundifolone is the major constituent of the essential oil of Mentha x villosa Hudson. In preliminary studies, rotundifolone induced significant hypotensive, bradycardic and vasorelaxant effects in rats. Thus, to gain more insight into the pharmacology of rotundifolone, the aim of this study was to characterize the molecular mechanism of action involved in relaxation produced by rotundifolone. The relaxant effect was investigated in rat superior mesenteric arteries by using isometric tension measurements and whole-cell patch-clamp techniques. Rotundifolone relaxed phenylephrine-induced contractions in a concentration-dependent manner. Pre-treatment with KCl (20 mM), charybdotoxin (10 )7 M) or tetraethylammonium (TEA 10 )3 or 3 · 10 )3 M) significantly attenuated the relaxation effect induced by rotundifolone. Additionally, whole-cell patch-clamp recordings were made in mesenteric smooth muscle cells and showed that rotundifolone significantly increased K + currents, and this effect was abolished by TEA (10 )3 M), suggesting the participation of BK Ca channels. Furthermore, rotundifolone inhibited the vasoconstriction induced by CaCl 2 in depolarizing nominally Ca 2+-free medium and antagonized the contractions elicited by an L-type Ca 2+ channel agonist, S(-)-Bay K 8644 (2 · 10 )7 M), indicating that the vasodilatation involved inhibition of Ca 2+ influx through L-type voltage-dependent calcium channels (Ca v type-L). Additionally, rotundifolone inhibited L-type Ca 2+ currents (I Ca L), affecting the voltage-dependent activation of I Ca L and steady-state inactivation. Our findings suggest that rotundifolone induces vasodilatation through two distinct but complementary mechanisms that clearly depend on the concentration range used. Rotundifolone elicits an increase in the current density of BK Ca channels and causes a shift in the steady-state inactivation relationship for Ca v type-L towards more hyperpolarized membrane potentials.Terpenoids constitute the largest class of plant secondary metabolites and have been used in essential oils for centuries as therapeutically relevant compounds. However, little is known about their mechanism of action [1,2].The monoterpenoids, such as camphor, borneol, citronellol, alpha-terpineol or menthol, compose a group of naturally occurring organic compounds derived from two isoprene units. They are the major components of some essential oils presenting anaesthetic and analgesic activities [3,4] Rotundifolone (C 10 H 14 O 2 ; molecular weight 166) is a naturally occurring monoterpenic ketone of plant origin and an important chemical constituent of the essential oils of many Mentha species (Mentha rotundifolia, M. suaveolens, M. spicata L., M. longifolia and M. x villosa) [19,20]. A previous report from our group showed that rotundifolone induced marked hypotension and bradycardia in non-anaesthetized normotensive rats using an in vivo approach. Those effects were probably due to a decrease in peripheral vascular resistance [21], a hypothesis that was subsequently str...
These results demonstrate the hypotensive and bradycardic effects of CLME, as well as its potent vasodilation of rat mesenteric arteries. These effects, may in part, be due to the inhibition of extracellular Ca(2+) influx and/or inhibition of intracellular Ca(2+) mobilization from Phe-sensitive stores.
For many years, nitric oxide (NO) has been studied as an important mediator in the control of vascular tone. Endothelial deficiencies that diminish NO production can result in the development of several future cardiovascular diseases, such as hypertension and arteriosclerosis. In this context, new drugs with potential ability to donate NO have been studied. In this study, 3 aromatic oximes [benzophenone oxime, 4-Cl-benzophenone oxime, and E-cinnamaldehyde oxime (E-CAOx)] induced vasorelaxation in endothelium-denuded and intact superior mesenteric rings precontracted with phenylephrine. E-CAOx demonstrated the most potent effect, and its mechanism of action was evaluated. Vascular reactivity experiments demonstrated that the effect of E-CAOx was reduced by the presence of 2-phenyl-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide, 1H[1,2,4,]oxadiazolo[4,3-a]quinoxalin-1-one, and (Rp)-8-(para-chlorophenylthio)guanosine-3',5'-cyclic monophosphorothioate, suggesting the participation of NO/sGC/PKG pathway. NO donation seems to be mediated through nicatinamide adenine dinucleotide phosphate-dependent reductases because 7-ethoxyresorufin decreased the effect of E-CAOx on vascular reactivity and reduced NO formation as detected by flow cytometry using the NO indicator diaminofluorescein 4,5-diacetate. Further downstream of NO donation, K+ subtype channels were also shown to be involved in the E-CAOx vasorelaxant effect. The present study showed that E-CAOx acts like an NO donor, activating NO/sGC/PKG pathway and thus K+ channels.
There is a need for more detailed elucidation of T-cell immunity in chikungunya infection. CD8 T cells are one of main actors against viruses. Here, we analysed CD8 T lymphocytes from patients in the acute and chronic phases of chikungunya disease (CHIKD). Our results demonstrate that CD8 T cells expressed higher ex vivo granzyme B, perforin and CD107A expression in patients in the acute phase of CHIKD compared with healthy individuals and higher ex vivo expression of CD69, interleukin-17A, interleukin-10 and CD95 ligand, and co-expression of CD95/CD95 ligand. These results elucidate the importance of these lymphocytes, demonstrating immune mechanisms mediated in human chikungunya infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.