Thermal comfort inside broiler husbandry facilities is essential in obtaining good results in the production activity. Assessment of adequate thermodynamic conditions requires measurement and control, usually implying costs and specialized maintenance. The objective of this research was to monitor the temperature, relative humidity and air speed distributions by a developed low-cost, open-source and easy-to-use measurement system, using Arduino (hardware) and Scilab (software) for real-time data acquisition. Sensors were installed in a real facility (Cianorte, PR), with measurements for internal ambient (20 sensors for temperature/relative humidity, and two sensors for differential pressure, respectively 0.5 and 1.5 m high) and external ambient (pressure and wind speed, 1.5 m high). Data acquisition system has enabled communication with sensors which are easily read by the computer and stored in a data file. The developed data acquisition system proved to be efficient when applied in a commercial broiler husbandry facility, enabling real-time monitoring for thermal comfort parameters.
This paper aims to identify performance improvements in cooker-top gas burners for changes in its original geometry, with aspect ratios (ARs) ranging from 0.25 to 0.56 and from 0.28 to 0.64. It operates on liquefied petroleum gas (LPG) and five thermal power (TP) levels. Considering the large number of cooker-top burners currently being used, even slight improvements in thermal performance resulting from a better design and recommended operating condition will lead to a significant reduction of energy consumption and costs. Appropriate instrumentation was used to carry out the measurements and methodology applied was based on regulations from INMETRO (CONPET program for energy conversion efficiency in cook top and kilns), ABNT (Brazilian Technical Standards Normative) and ANP—National Agency of Petroleum, Natural Gas (NG) and Biofuels. The results allow subsidizing recommendations to minimum energy performance standards (MEPS) for residential use, providing also higher energy conversion efficiency and/or lower fuel consumption. Main conclusions are: (i) Smaller aspect ratios result in the same heating capacity and higher efficiency; (ii) higher aspect ratios (original burners) are fuel consuming and inefficient; (iii) operating conditions set on intermediate are lower fuel consumption without significant differences in temperature increases; (iv) Reynolds number lower than 500 provides higher efficiencies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.