In situ high-pressure tensiometry and ab initio calculations were used to rationally design surfactants for the 1,1,1,2-tetrafluoroethane-water (HFA134a|W) interface. Nonbonded pair interaction (binding) energies (E(b)) of the complexes between HFA134a and candidate surfactant tails were used to quantify the HFA-philicity of selected moieties. The interaction between HFA134a and an ether-based tail was shown to be predominantly electrostatic in nature and much more favorable than that between HFA134a and a methyl-based fragment. The interfacial activity of (i) amphiphiles typically found in FDA-approved pressurized metered-dose inhaler (pMDI) formulations, (ii) a series of nonionic surfactants with methylene-based tails, and (iii) a series of nonionic surfactants with ether-based tails was investigated at the HFA134a|W interface using in situ tensiometry. This is the first time that the tension of the surfactant-modified HFA134a|W interface has been reported in the literature. The ether-based surfactants were shown to be very interfacially active, with tension decreasing by as much as 27 mN.m(-)(1). However, the methyl-based surfactants, including those from FDA-approved formulations, did not exhibit high activity at the HFA134a|W interface. These results are in direct agreement with the E(b) calculations. Significant differences in interfacial activity are noted for surfactants at the 2H,3H-perfluoropentane (HPFP)|water and HFA134a|W interfaces. Care should be taken, therefore, when results from the mimicking solvent (HPFP) are extrapolated to HFA134a-based systems. The results shown here are of relevance in the selection of surfactants capable of forming and stabilizing reverse aqueous aggregates in HFA-based pMDIs, which are promising formulations for the systemic delivery of biomolecules to and through the lungs.
Understanding solvation in hydrofluoroalkane (HFA) propellants is of great importance for the development of novel pressurized metered-dose inhaler (pMDI) formulations. HFA-based pMDIs are not only the most widely used inhalation therapy devices for treating lung diseases, but they also hold promise as vehicles for the systemic delivery of biomolecules to and through the lungs. In this work we propose a combined microscopic experimental and computational approach to quantitatively relate the chemistry of moieties to their HFA-philicity. Binding energy calculations are used to determine the degree of interaction between a propellant HFA and candidate fragments. We define a new quantity, the enhancement factor E, which also takes into account fragment-fragment interactions. This quantity is expected to correlate well with the solubility and the ability of the moieties of interest to impart stability to colloidal dispersions in HFAs. We use a methyl-based (CH) segment and its fluorinated analog (CF) to test our approach. CH is an important baseline case since it represents the tails of surfactants in FDA-approved pMDIs. CF was chosen due to the improved solubility and ability of this chemistry to stabilize aqueous dispersions in HFAs. Adhesion force from Chemical Force Microscopy (CFM) is used as an experimental analog to the binding energy calculations. The force of interaction between a chemically modified AFM tip and substrate is measured in a model HFA, which is a liquid at ambient conditions. Silanes with the same chemistry as the fragments used in the ab initio calculations allow for direct comparison between the two techniques. The CFM results provide an absolute scale for HFA-philicity. Single molecule (pair) forces calculated from the CFM experiments are shown to be in very good agreement to the E determined from the ab initio calculations. The ab initio calculations and CFM are corroborated by previous experimental studies where propellants HFAs are seen to better solvate the CF functionality.
Pressurized metered-dose inhalers (pMDIs) have been recognized as potential devices for the delivery of systemically acting drugs, including biomolecules, to and through the lungs. Therefore, the development of novel excipients capable of imparting stability to suspension formulations in hydrofluoroalkane (HFA) propellants is of great relevance because many of the drugs of interest are poorly soluble in HFAs. In this work, we use ab initio calculations and chemical force microscopy (CFM) to determine the HFA-philicity of the biodegradable and biocompatible ester moiety quantitatively. The complementary information obtained from the binding energy calculations and adhesion force measurements are used to gain microscopic insight into the relationship between the chemistry of the moiety of interest and its solvation in HFA. A lactide (LA)-based copolymer surfactant was synthesized and characterized, and its ability to stabilize a dispersion of micronized budesonide in HFA227 was demonstrated. These results corroborate the ab initio calculations and CFM and show that the LA-based moiety is a suitable candidate for enhancing the stability of dispersions in HFA-based pMDIs.
A new all-atom force field capable of accurately predicting the bulk and interfacial properties of 1,1,1,2-tetrafluoroethane (HFA134a) is reported. Parameterization of several force fields with different initial charge configurations from ab initio calculations was performed using the histogram reweighting method and Monte Carlo simulations in the grand canonical ensemble. The 12-6 Lennard-Jones well depth and diameter for the different HFA134a models were determined by fitting the simulation results to pure-component vapor-equilibrium data. Initial screening of the force fields was achieved by comparing the calculated and experimental bulk properties. The surface tension of pure HFA134a served as an additional screening property to help discriminate an optimum model. The proposed model reproduces the experimental saturated liquid and vapor densities, and the vapor pressure for HFA134a within average errors of 0.7%, 4.4%, and 3.1%, respectively. Critical density, temperature, vapor pressure, normal boiling point, and heat of vaporization at 298 K are also in good agreement with experimental data with errors of 0.2%, 0.1%, 6.2%, 0%, 2.2%, respectively. The calculated surface tension is found to be within the experimental range of 7.7-8.1 mN.m(-1). The dipole moment of the different models was found to significantly affect the prediction of the vapor pressure and surface tension. The ability of the HFA134a models in predicting the interfacial tension against water is also discussed. The results presented here are relevant in the development of technologies where the more environmentally friendly HFA134a is utilized as a substitute to the ozone depleting chlorofluorocarbon propellants.
A combined computational and experimental approach is used to determine the interfacial thermodynamic and structural properties of the liquid 1,1,1,2-tetrafluoroethane (HFA134a)-vapor and liquid HFA134a-water (HFA134a|W) interfaces at 298 K and saturation pressure. Molecular dynamics (MD) computer simulations reveal a stable interface between HFA134a and water. The "10-90" interfacial thickness is comparable with those typically reported for organic-water systems. The interfacial tension of the HFA134a|W interface obtained from the pressure tensor analysis of the MD trajectory is in good agreement with the experimental value determined using in situ high-pressure tensiometry. These results indicate that the potential models utilized are capable of describing the intermolecular interactions between these two fluids. The tension of the HFA134a|W interface is significantly lower than those typically observed for conventional oil-water interfaces and similar to that of the compressed CO(2)-water interface, observed at moderate CO(2) pressures. The MD and tensiometric results are also compared and contrasted with the HFA134a|W and chlorofluorocarbon-water tension values estimated from a parametric relationship. This represents the first report of the interfacial and microscopic properties of the (propellant) hydrofluoroalkanes (HFA)|W interface. The results presented here are of relevance in the design of surfactants capable of forming and stabilizing water-in-HFA microemulsions. Reverse aqueous microemulsions in HFA-based pressurized metered-dose inhalers are candidate formulations for the systemic delivery of biomolecules to and through the lungs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.