In this review, we present an analysis of the most used multi-agent reinforcement learning algorithms. Starting with the single-agent reinforcement learning algorithms, we focus on the most critical issues that must be taken into account in their extension to multi-agent scenarios. The analyzed algorithms were grouped according to their features. We present a detailed taxonomy of the main multi-agent approaches proposed in the literature, focusing on their related mathematical models. For each algorithm, we describe the possible application fields, while pointing out its pros and cons. The described multi-agent algorithms are compared in terms of the most important characteristics for multi-agent reinforcement learning applications—namely, nonstationarity, scalability, and observability. We also describe the most common benchmark environments used to evaluate the performances of the considered methods.
In the last few years, indoor localization has attracted researchers and commercial developers. Indeed, the availability of systems, techniques and algorithms for localization allows the improvement of existing communication applications and services by adding position information. Some examples can be found in the managing of people and/or robots for internal logistics in very large warehouses (e.g., Amazon warehouses, etc.). In this paper, we study and develop a system allowing the accurate indoor localization of people visiting a museum or any other cultural institution. We assume visitors are equipped with a Bluetooth Low Energy (BLE) device (commonly found in modern smartphones or in a small chipset), periodically transmitting packets, which are received by geolocalized BLE receivers inside the museum area. Collected packets are provided to the locator server to estimate the positions of the visitors inside the museum. The position estimation is based on a feed-forward neural network trained by a measurement campaign in the considered environment and on a non-linear least square algorithm. We also provide a strategy for deploying the BLE receivers in a given area. The performance results obtained from measurements show an achievable position estimate accuracy below 1 m.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.