We have successfully generated and characterized a stable packaging cell line for HIV-1-based vectors. To allow safe production of vector, a minimal packaging construct carrying only the coding sequences of the HIV-1 gag-pol, tat, and rev genes was stably introduced into 293G cells under the control of a Tet(o) minimal promoter. 293G cells express the chimeric Tet(R)/VP16 trans-activator and contain a tetracycline-regulated vesicular stomatitis virus protein G (VSV-G) envelope gene. When the cells were grown in the presence of tetracycline the expression of both HIV-1-derived and VSV-derived packaging functions was suppressed. On induction, approximately 50 ng/ml/24 hr of Gag p24 equivalent of vector was obtained. After introduction of the transfer vector by serial infection, vector could be collected for several days with a transduction efficiency similar or superior to that of vector produced by transient transfection both for dividing and growth-arrested cells. The vector could be effectively concentrated to titers reaching 10(9) transducing units/ml and allowed for efficient delivery and stable expression of a GFP transgene in the mouse brain. The packaging cell line and all vector producer clones described here were shown to be free from replication-competent recombinants, and from recombinants between packaging and vector constructs that transfer the viral gag-pol genes. The packaging cell line and the assays developed will advance lentiviral vectors toward the stringent requirements of clinical applications.
SUMMARY Sonic Hedgehog (Shh) has dual roles in vertebrate development, as it promotes progenitor cell proliferation and induces tissue patterning. Here we show mitogenic and patterning functions of Shh can be uncoupled from one another. Using a genetic approach to selectively inhibit Shh-proteoglycan interactions in a mouse model, we show binding of Shh to proteoglycans is required for proliferation of neural stem/precursor cells but not for tissue patterning. Shh-proteoglycan interactions regulate both spatial and temporal features of Shh signaling. Proteoglycans localize Shh to specialized mitogenic niches and also act at the single cell level to regulate the duration of Shh signaling, thereby promoting a gene expression program important for cell division. As activation of the Shh pathway is a feature of diverse human cancers, selective stimulation of proliferation by Shh-proteoglycan interactions may also figure prominently in neoplastic growth.
The rodent olfactory system is of increasing interest to scientists, studied, in part, in systems biology because of its stereotyped, yet accessible circuitry. In addition, this area's unique ability to generate new neurons throughout an organism's lifetime makes it an attractive system for developmental and regenerative biologists alike. Such interest necessitates a means for a quick, yet reliable assessment of olfactory function. Many tests of olfactory ability are complex, variable or not specifically designed for mice. Also, some tests are sensitive to memory deficits as well as defects in olfactory abilities, confounding obtained results.Here, we describe a simple battery of tests designed to identify defects in olfactory sensitivity and preference. First, an initial general health assessment allows for the identification of animals suitable for further testing. Second, mice are exposed to various dilutions of scents to ascertain whether there is a threshold difference. Third, mice are presented with various scents, both attractive and aversive, that allow for the assessment of olfactory preference. These simple studies should make the initial characterization of olfactory behavior accessible for labs of varied resources and expertise.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.