Our results indicate that increases in ambient temperature have important public health impacts on morbidity.
Residential proximity to busy roads has been associated with adverse health outcomes, and school location may also be an important determinant of children's exposure to traffic-related pollutants. The goal of this study was to examine the characteristics of public schools (grades K-12) in California (n = 7,460) by proximity to major roads. We determined maximum daily traffic counts for all roads within 150 m of the school using a statewide road network and a geographic information system. Statewide, 173 schools (2.3%) with a total enrollment of 150,323 students were located within 150 m of high-traffic roads (greater than or equal to 50,000 vehicles/day); 536 schools (7.2%) were within 150 m of medium-traffic roads (25,000-49,999 vehicles/day). Traffic exposure was related to race/ethnicity. For example, the overall percentage of nonwhite students was 78% at the schools located near high-traffic roads versus 60% at the schools with very low exposure (no streets with counted traffic data within 150 m). As the traffic exposure of schools increased, the percentage of both non-Hispanic black and Hispanic students attending the schools increased substantially. Traffic exposure was also related to school-based and census-tract-based socioeconomic indicators, including English language learners. The median percentage of children enrolled in free or reduced-price meal programs increased from 40.7% in the group with very low exposure to 60.5% in the highest exposure group. In summary, a substantial number of children in California attend schools close to major roads with very high traffic counts, and a disproportionate number of those students are economically disadvantaged and nonwhite.
BackgroundStudies have shown associations between air pollution or traffic exposure and adverse birth outcomes, such as low birth weight. However, very few studies have examined the effect of traffic emissions on spontaneous abortion (SAB).ObjectiveThe goal of this study was to determine whether residential exposure to vehicular traffic was associated with SAB.MethodsPregnant women from a prepaid health plan in California were recruited into a prospective cohort study in 1990–1991. Three measures of traffic exposure were constructed for the 4,979 participants using annual average daily traffic (AADT) counts near each residence and distance from residence to major roads. SAB was examined in relation to the traffic exposure measures using logistic regression adjusting for a number of demographic and lifestyle variables.ResultsOf the traffic measures, maximum annual average traffic within 50 m showed the strongest association with SAB, although it was not statistically significant. The adjusted odds ratio (AOR) for the top 90th percentile (AADT greater than 15,199) versus the bottom 75th percentile (AADT = 0–1,089) was 1.18 [95% confidence interval (CI), 0.87–1.60]. However, subgroup analyses showed statistically significant associations for traffic with SAB among African Americans (AOR = 3.11; 95% CI, 1.26–7.66) and nonsmokers (AOR = 1.47; 95% CI, 1.07–2.04).ConclusionIn this cohort, living within 50 m of a road with AADT of 15,200 or more was significantly associated with SAB among African Americans and nonsmokers. Further research is needed to confirm these results and possibly elucidate the mechanisms responsible for the findings.
Background:Studies have explored ozone’s connection to asthma and total respiratory emergency department visits (EDVs) but have neglected other specific respiratory diagnoses despite hypotheses relating ozone to respiratory infections and allergic responses.Objective:We examined relationships between ozone and EDVs for respiratory visits, including specifically acute respiratory infections (ARI), asthma, pneumonia, chronic obstructive pulmonary disease (COPD), and upper respiratory tract inflammation (URTI).Methods:We conducted a multi-site time-stratified case-crossover study of ozone exposures for approximately 3.7 million respiratory EDVs from 2005 through 2008 among California residents living within 20 km of an ozone monitor. Conditional logistic regression was used to estimate associations by climate zone. Random effects meta-analysis was then applied to estimate pooled excess risks (ER). Effect modification by season, distance from the monitor and individual demographic characteristics (i.e., age, race/ethnicity, sex, and payment method), and confounding by other gaseous air pollutants were also investigated. Meta-regression was utilized to explore how climate zone–level meteorological, demographic, and regional differences influenced estimates.Results:We observed ozone-associated increases in all respiratory, asthma, and ARI visits, which were slightly larger in the warm season [asthma ER per 10-ppb increase in mean of same and previous 3 days ozone exposure (lag03) = 2.7%, 95% CI: 1.5, 3.9; ARI ERlag03 = 1.4%, 95% CI: 0.8, 1.9]. EDVs for pneumonia, COPD, and URTI were also significantly associated with ozone exposure over the whole year, but typically more consistently so during the warm season.Conclusions:Short-term ozone exposures among California residents living near an ozone monitor were positively associated with EDVs for asthma, ARI, pneumonia, COPD, and URTI from 2005 through 2008. Those associations were typically larger and more consistent during the warm season. Our findings suggest that these outcomes should be considered when evaluating the potential health benefits of reducing ozone concentrations.Citation:Malig BJ, Pearson DL, Chang YB, Broadwin R, Basu R, Green RS, Ostro B. 2016. A time-stratified case-crossover study of ambient ozone exposure and emergency department visits for specific respiratory diagnoses in California (2005–2008). Environ Health Perspect 124:745–753; http://dx.doi.org/10.1289/ehp.1409495
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.