Autosomal dominant hypercholesterolemia (ADH), one of the most frequent hereditary disorders, is characterized by an isolated elevation of LDL particles that leads to premature mortality from cardiovascular complications. It is generally assumed that mutations in the LDLR and APOB genes account for ADH. We identified one large French pedigree (HC2) and 12 additional white families with ADH in which we excluded linkage to the LDLR and APOB, implicating a new locus we named "FH3." A LOD score of 3.13 at a recombination fraction of 0 was obtained at markers D1S2892 and D1S2722. We localized the FH3 locus to a 9-cM interval at 1p34.1-p32. We tested four regional markers in another set of 12 ADH families. Positive LOD scores were obtained in three pedigrees, whereas linkage was excluded in the others. Heterogeneity tests indicated linkage to FH3 in approximately 27% of these non-LDLR/non-APOB ADH families and implied a fourth locus. Radiation hybrid mapping located four candidate genes at 1p34.1-p32, outside the critical region, showing no identity with FH3. Our results show that ADH is genetically more heterogeneous than conventionally accepted.
Mutations in the LDL receptor gene (LDLR) cause familial hypercholesterolemia (FH), a common autosomal dominant disorder. The LDLR database is a computerized tool that has been developed to provide tools to analyse the numerous mutations that have been identified in the LDLR gene. The second version of the LDLR database contains 140 new entries and the software has been modified to accommodate four new routines. The analysis of the updated data (350 mutations) gives the following informations: (i) 63% of the mutations are missense, and only 20% occur in CpG dinucleotides; (ii) although the mutations are widely distributed throughout the gene, there is an excess of mutations in exons 4 and 9, and a deficit in exons 13 and 15; (iii) the analysis of the distribution of mutations located within the ligand-binding domain shows that 74% of the mutations in this domain affect a conserved amino-acid, and that they are mostly confined in the C-terminal region of the repeats. Conversely, the same analysis in the EGF-like domain shows that 64% of the mutations in this domain affect a non-conserved amino-acid, and, that they are mostly confined in the N-terminal half of the repeats. The database is now accessible on the World Wide Web at http://www.umd.necker.fr
Mutations in the LDL receptor gene (LDLR) cause familial hypercholesterolemia (FH), one of the most frequent hereditary dominant disorders. The protein defect was identified in 1973, the gene was localized by in situ hybridization in 1985, and since, a growing number of mutations have been reported. The UMD-LDLR database is customized software that has been developed to list all mutations, and also to provide means to analyze them at the nucleotide and protein levels. The database has been recently modified to fulfill the recommendations of the Nomenclature Working Group for human gene mutations. However, in the current version, both the nomenclature and usual LDLR gene mutation names are reported since the latter are more commonly used. The software has also been modified to accommodate the splicing mutations and alleles that carry two nucleotide variations. The current version of UMD-LDLR contains 840 entries, of which 490 are new entries. Point mutations account for 90% of all mutations in the LDLR gene; the remaining are mostly major rearrangements, due to the presence of Alu sequences. Three new routines have been implemented in the software, thus giving users access to 13 sorting tools. In addition to the database, a Web site containing information about polymorphisms, major rearrangements, and promoter mutations is available. Both are accessible to the scientific community (www.umd.necker.fr) and should help groups working on LDLR to check their mutations and identify new ones, and greatly facilitate the understanding of functional classes/genotype relationships and of genotype/phenotype correlations.
Cystic fibrosis (CF) is thought to be rare in the black populations of Africa who have minimal white admixture. Only a few cases have been reported but have not been studied at the molecular level. We report the detection of CFTR mutations in three southern African black patients.One was homozygous for the 3120 + 1G-*A mutation, while the other two were compound heterozygotes each with this mutation on one chromosome. The other mutations were G1249E and a previously unreported in frame 54 bp deletion within exon 17a involving nucleotides 3196-3249 (3196del54). The 3120 + 1G->A mutation was first described in American black patients and has been shown to be a common mutation in this population (9-14% of CF chromosomes). It was also found in a black CF patient whose father, the 3120 + 1G-4A carrier, is from Cameroon.These data suggest that it is an old mutation which accounts for many of the CFTR mutations in African blacks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.