Research on the perception of temporal order uses either temporal-order judgment (TOJ) tasks or synchrony judgment (SJ) tasks, in both of which two stimuli are presented with some temporal delay and observers must judge the order of presentation. Results generally differ across tasks, raising concerns about whether they measure the same processes. We present a model including sensory and decisional parameters that places these tasks in a common framework that allows studying their implications on observed performance. TOJ tasks imply specific decisional components that explain the discrepancy of results obtained with TOJ and SJ tasks. The model is also tested against published data on audiovisual temporal-order judgments, and the fit is satisfactory, although model parameters are more accurately estimated with SJ tasks. Measures of latent point of subjective simultaneity and latent sensitivity are defined that are invariant across tasks by isolating the sensory parameters governing observed performance, whereas decisional parameters vary across tasks and account for observed differences across them. Our analyses concur with other evidence advising against the use of TOJ tasks in research on perception of temporal order.
Morgan, Dillenburger, Raphael, and Solomon have shown that observers can use different response strategies when unsure of their answer, and, thus, they can voluntarily shift the location of the psychometric function estimated with the method of single stimuli (MSS; sometimes also referred to as the single-interval, two-alternative method). They wondered whether MSS could distinguish response bias from a true perceptual effect that would also shift the location of the psychometric function. We demonstrate theoretically that the inability to distinguish response bias from perceptual effects is an inherent shortcoming of MSS, although a three-response format including also an "undecided" response option may solve the problem under restrictive assumptions whose validity cannot be tested with MSS data. We also show that a proper two-alternative forced-choice (2AFC) task with the three-response format is free of all these problems so that bias and perceptual effects can easily be separated out. The use of a three-response 2AFC format is essential to eliminate a confound (response bias) in studies of perceptual effects and, hence, to eliminate a threat to the internal validity of research in this area.
Time perception is studied with subjective or semi-objective psychophysical methods. With subjective methods, observers provide quantitative estimates of duration and data depict the psychophysical function relating subjective duration to objective duration. With semi-objective methods, observers provide categorical or comparative judgments of duration and data depict the psychometric function relating the probability of a certain judgment to objective duration. Both approaches are used to study whether subjective and objective time run at the same pace or whether time flies or slows down under certain conditions. We analyze theoretical aspects affecting the interpretation of data gathered with the most widely used semi-objective methods, including single-presentation and paired-comparison methods. For this purpose, a formal model of psychophysical performance is used in which subjective duration is represented via a psychophysical function and the scalar property. This provides the timing component of the model, which is invariant across methods. A decisional component that varies across methods reflects how observers use subjective durations to make judgments and give the responses requested under each method. Application of the model shows that psychometric functions in single-presentation methods are uninterpretable because the various influences on observed performance are inextricably confounded in the data. In contrast, data gathered with paired-comparison methods permit separating out those influences. Prevalent approaches to fitting psychometric functions to data are also discussed and shown to be inconsistent with widely accepted principles of time perception, implicitly assuming instead that subjective time equals objective time and that observed differences across conditions do not reflect differences in perceived duration but criterion shifts. These analyses prompt evidence-based recommendations for best methodological practice in studies on time perception.
Research on estimation of a psychometric function Ψ has usually focused on comparing alternative algorithms to apply to the data, rarely addressing how best to gather the data themselves (i.e., what sampling plan best deploys the affordable number of trials). Simulation methods were used here to assess the performance of several sampling plans in yes-no and forced-choice tasks, including the QUEST method and several variants of up-down staircases and of the method of constant stimuli (MOCS). We also assessed the efficacy of four parameter estimation methods. Performance comparisons were based on analyses of usability (i.e., the percentage of times that a plan yields usable data for the estimation of all the parameters of Ψ) and of the resultant distributions of parameter estimates. Maximum likelihood turned out to be the best parameter estimation method. As for sampling plans, QUEST never exceeded 80% usability even when 1000 trials were administered and rendered accurate estimates of threshold but misestimated the remaining parameters. MOCS and up-down staircases yielded similar and acceptable usability (above 95% with 400-500 trials) and, although neither type of plan allowed estimating all parameters with optimal precision, each type appeared well suited to estimating a distinct subset of parameters. An analysis of the causes of this differential suitability allowed designing alternative sampling plans (all based on up-down staircases) for yes-no and forced-choice tasks. These alternative plans rendered near optimal distributions of estimates for all parameters. The results just described apply when the fitted Ψ has the same mathematical form as the actual Ψ generating the data; in case of form mismatch, all parameters except threshold were generally misestimated but the relative performance of all the sampling plans remained identical. Detailed practical recommendations are given. Keywords: psychometric function, psychophysical methods, least squares, maximum likelihood, simulationLos estudios sobre estimación de la función psicométrica Ψ se han centrado tradicionalmente en comparar los algoritmos que se pueden aplicar a los datos, dejando al margen el problema de cómo recoger los propios datos (es decir, qué esquema de muestreo despliega de mejor forma los ensayos disponibles). Aquí se utilizan técnicas de simulación para evaluar el rendimiento de varios esquemas de muestreo en tareas de sí-no y de elección forzada, incluyendo QUEST y distintas variantes de escaleras de paso fijo y del método de los estímulos constantes. También se evalúa la eficacia de cuatro métodos de estimación de parámetros. Las comparaciones se basan en análisis de usabilidad (es decir, del porcentaje de veces que un esquema proporciona datos válidos para estimar todos los parámetros de Ψ) y de las distribuciones de las estimaciones. El mejor método de estimación resultó ser el de máxima verosimilitud. En cuanto a esquemas de muestreo, QUEST no llegó a rendir una usabilidad del 80% ni siquiera cuando se administraron 1000 ensayos y, a...
Research on temporal-order perception uses temporal-order judgment (TOJ) tasks or synchrony judgment (SJ) tasks in their binary SJ2 or ternary SJ3 variants. In all cases, two stimuli are presented with some temporal delay, and observers judge the order of presentation. Arbitrary psychometric functions are typically fitted to obtain performance measures such as sensitivity or the point of subjective simultaneity, but the parameters of these functions are uninterpretable. We describe routines in MATLAB and R that fit model-based functions whose parameters are interpretable in terms of the processes underlying temporal-order and simultaneity judgments and responses. These functions arise from an independent-channels model assuming arrival latencies with exponential distributions and a trichotomous decision space. Different routines fit data separately for SJ2, SJ3, and TOJ tasks, jointly for any two tasks, or also jointly for the three tasks (for common cases in which two or even the three tasks were used with the same stimuli and participants). Additional routines provide bootstrap p-values and confidence intervals for estimated parameters. A further routine is included that obtains performance measures from the fitted functions. An R package for Windows and source code of the MATLAB and R routines are available as Supplementary Files.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.