The availability of constant electricity supply is a crucial factor to the performance of any industry. Nevertheless, the unstable supply of electricity in Cameroon has led to countless periods of electricity load shedding, hence, making the management of the telecom industry to fall on backup power supply such as diesel generators. The fuel consumption of these generators remain a challenge due to some perturbations in the mechanical fuel level gauges and lack of maintenance at the base stations resulting to fuel pilferage. In order to overcome these effects, we detect anomalies in the recorded data by learning the patterns of the fuel consumption using four classification techniques namely; support vector machines (SVM), K-Nearest Neighbors (KNN), Logistic Regression (LR), and MultiLayer Perceptron (MLP) and then compare the performance of these classification techniques on a test data. In this paper, we show the use of supervised machine learning classification based techniques in detecting anomalies associated with the fuel consumed dataset from TeleInfra base stations using the generator as a source of power. Here, we perform the normal feature engineering, selection, and then fit the model classifiers to obtain results and finally, test the performance of these classifiers on a test data. The results of this study show that MLP has the best performance in the evaluation measurement recording a score of 96 % in the K-fold cross validation test. In addition, because of class imbalance in the observation, we use the precision-recall curve instead of the ROC curve and registered the probability of the Area Under Curve (AUC) as 0:98.
This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https:// creativecommons.org/licenses/by/ 4.0/).
The seasonal autoregressive integrated moving average with exogenous factors (SARIMAX) has shown promising results in modeling small and sparse observed time-series data by capturing linear features using independent and dependent variables. Long short-term memory (LSTM) is a promising neural network for learning nonlinear dependence features from data. With the increase in wildlife roadkill patterns, the SARIMAX-only and LSTM-only models would likely fail to learn the precise endogenous and/or exogenous variables driven by this wildlife roadkill data. In this paper, we design and implement an error correction mathematical framework based on LSTM-only. The framework extracts features from the residual error generated by a SARIMAX-only model. The learned residual features correct the output time-series prediction of the SARIMAX-only model. The process combines SARIMAX-only predictions and LSTM-only residual predictions to obtain a hybrid SARIMAX-LSTM. The models are evaluated using South African wildlife–vehicle collision datasets, and the experiments show that compared to single models, SARIMAX-LSTM increases the accuracy of a taxon whose linear components outweigh the nonlinear ones. In addition, the hybrid model fails to outperform LSTM-only when a taxon contains more nonlinear components rather than linear components. Our assumption of the results is that the collected exogenous and endogenous data are insufficient, which limits the hybrid model’s performance since it cannot accurately detect seasonality on residuals from SARIMAX-only and minimize the SARIMAX-LSTM error. We conclude that the error correction framework should be preferred over single models in wildlife time-series modeling and predictions when a dataset contains more linear components. Adding more related data may improve the prediction performance of SARIMAX-LSTM.
The instability of power generation from national grids has led industries (e.g., telecommunication) to rely on plant generators to run their businesses. However, these secondary generators create additional challenges such as fuel leakages in and out of the system and perturbations in the fuel level gauges. Consequently, telecommunication operators have been involved in a constant need for fuel to supply diesel generators. With the increase in fuel prices due to socio-economic factors, excessive fuel consumption and fuel pilferage become a problem, and this affects the smooth run of the network companies. In this work, we compared four machine learning algorithms (i.e. Gradient Boosting, Random Forest, Neural Network, and Lasso) to predict the amount of fuel consumed by a power generation plant. After evaluating the predictive accuracy of these models, the Gradient Boosting model out-perform the other three regressor models with the highest Nash efficiency value of 99.1 %.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.