Control of seed size involves complex interactions among the zygotic embryo and endosperm, the maternally derived seed coat, and the parent plant. Here we describe a mutant in Arabidopsis, megaintegumenta (mnt), in which seed size and weight are dramatically increased. One factor in this is extra cell division in the integuments surrounding mnt mutant ovules, leading to the formation of enlarged seed coats. Unusually for integument mutants, mnt does not impair female fertility. The mnt lesion also has pleiotropic effects on vegetative and floral development, causing extra cell division and expansion in many organs. mnt was identified as a mutant allele of AUXIN RESPONSE FACTOR 2 (ARF2), a member of a family of transcription factors that mediate gene expression in response to auxin. The mutant phenotype and gene expression studies described here provide evidence that MNT/ARF2 is a repressor of cell division and organ growth. The mutant phenotype also illustrates the importance of growth of the ovule before fertilization in determining final size of the seed.
Convergent findings from our behavioral screen for memory mutants and DNA microarray analysis of transcriptional responses during memory formation in normal animals suggest the involvement of the pumilio/staufen pathway in memory. Behavioral experiments confirm a role for this pathway and suggest a molecular mechanism for synapse-specific modification.
Mice carrying a truncated form of cAMP-responsive element binding protein (CREB)-binding protein (CBP) show several developmental abnormalities similar to patients with Rubinstein-Taybi syndrome (RTS). RTS patients suffer from mental retardation, whereas long-term memory formation is defective in mutant CBP mice. A critical role for cAMP signaling during CREB-dependent long-term memory formation appears to be evolutionarily conserved. From this observation, we reasoned that drugs that modulate CREB function by enhancing cAMP signaling might yield an effective treatment for the memory defect(s) of CBP ؉/؊ mice. To this end, we designed a cell-based drug screen and discovered inhibitors of phosphodiesterase 4 (PDE4) to be particularly effective enhancers of CREB function. We extend previous behavioral observations by showing that CBP ؉/؊ mutants have impaired long-term memory but normal learning and short-term memory in an object recognition task. We demonstrate that the prototypical PDE4 inhibitor, rolipram, and a novel one (HT0712) abolish the long-term memory defect of CBP ؉/؊ mice. Importantly, the genetic lesion in CBP acts specifically to shift the dose sensitivity for HT0712 to enhance memory formation, which conveys molecular specificity on the drug's mechanism of action. Our results suggest that PDE4 inhibitors may be used to treat the cognitive dysfunction of RTS patients.
EXS regulates the number of cells that divide in the L2 layer of the anther, and thus the number of functional male archesporial initials. In the young seed, EXS affects cell size in the embryo and the rate at which it develops. The apparently contrasting roles of EXS in the anther and embryo suggest that signaling through the EXS receptor kinase is a feature of a number of regulatory pathways in Arabidopsis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.