<p><strong>Summary:</strong> As part of the NASA Frontier Development Lab, we implemented a parallelized cloud-based exploration strategy to better understand the statistical distributions and properties of potential planetary atmospheres. Starting with a modern-day Earth atmosphere, we iteratively and incrementally simulated a range of atmospheres to infer the landscape of the multi-parameter space, such as the abundances of biological mediated gases that would yield stable (non-runaway) planetary atmospheres on Earth-like planets around solar-type stars. Our current dataset comprises of 124,314 simulated models of earth-like exoplanet atmospheres and is available publicly on the NASA Exoplanet Archive. Our scalable approach of analysing atmospheres could also help interpret future observations of planetary atmospheres by providing estimates of atmospheric gas fluxes and temperatures as a function of altitude, and thereby enable high-throughput first-order assessment of the potential habitability of exoplanetary surfaces.</p> <p><strong>Introduction:</strong> The NASA Frontier Development Laboratory (FDL) is an annual science accelerator that focuses on applying machine learning and large-scale computing to challenges in space science and exploration (Cabrol et al. 2018). FDL engages interdisciplinary teams of computer scientists and space science domain experts and tasks them to solve problems that are valuable to NASA and humanity&#8217;s future. We implemented a cloud-based strategy to better understand the statistical distributions of habitable planets and life in the universe and layout an avenue to characterize the potential role of biological regulation of planetary atmospheres.</p> <p>We simulated a range of atmospheres to infer the landscape of the multi-parameter space, such as the abundances of biological mediated gases that would yield stable (non-runaway) planetary atmospheres on Earth-like planets around solar-type stars. Our scalable tool, once coupled to a generalized ecosystem model, could help derive estimates of the biological mediated atmospheric gas fluxes and help constrain the type and the extent of exobiology on exoplanets based on the remotely detected atmospheric compositions.</p> <p><strong>Method</strong>: Our team generated data for a wide variety of hypothetical biospheres to scope out the plausible range of habitable atmospheres and metabolisms that could be present in the universe. We implemented a cloud-based massively parallelized procedural parameter search for a wide range of planetary atmospheres. Since existing tools were not capable of broad parameter scans, we streamlined the ATMOS 1-D atmospheric simulation code developed by the NASA Virtual Planetary Laboratory (Arney et al. 2016, Meadows et al. 2016). and produced a package for the community called PyAtmos (https://github.com/PyAtmos). This package dramatically increases the usability and accessibility of the ATMOS 1-D software across a range of platforms.</p> <p>We then used PyAtmos on the Google Cloud Platform in an automated and scalable procedure to search the parameter space of atmospheric compositions. Our search considered the relative concentrations of greenhouse gases such as methane, carbon dioxide and water. 124,314 different atmospheres were simulated and then analyzed to establish if the planetary surface temperatures and fluxes of gases were compatible with conditions that could maintain a liquid water inventory on the planetary surface.</p> <p><strong>Results:</strong> The dataset of planetary atmospheres we have generated can be used for training machine learning models to bootstrap the ATMOS code. It is an open-source dataset (https://exoplanetarchive.ipac.caltech.edu/cgi-bin/FDL/nph-fdl?atmos) available for the community to understand distributions of habitability parameters such as surface temperatures and free energy available to life on different classes of atmosphere bearing planets.</p> <p><img src="data:image/png;base64, iVBORw0KGgoAAAANSUhEUgAAAfQAAAD9CAYAAABKroX2AAAACXBIWXMAAALlAAAC5QEb/l57AAAgAElEQVR4nOy9B5xcZ3ku/pwzfXa2911Jq96buywk27KNbWxsSABjUwK2CXC5NyQkgQD/fwI3uYEAlxYICaQCARwI3bjibsndSLJVrK6VVtv79Jlzzv097/d9Z2ZlNZcVspnXiN2dOed87e3tWJlMxhsYHAQ8CHie/qUcLMj3lmXJh8FQEK7rwXUc/3p+5/EiT12vrrRg2zZc1y17mLogHImiWMjD9Vx/7Bdeq8FSz4Ln+XPw9HNsjivDurBgqUd5MlkEAkE4TsGfu+e5+i41V/WZVxpE7iv7Xq/CfC3f6O/tQFCeXyjk5bn82g4EZF/sKc8FLNuC53p6zuZxFgLBAIrFYmkUi8+3ZR5qX0p3WOUT0efB/7P0npn9NutU+6T+dr3S91PPAaX90g/1z/AYZxAMhmS+AduG47pyXlynV3aG/jAejnr+1M/NGQbsoB7T9S/zjpqp4EbAhuu4JRwpw4kpz7YUTrj+/ns+Xhz9TE/jreyR3kNL31v+DEufDc/bXD91ayz//I61B+XrJR6YSw2uC67I+ks3mN/N/hlcLcfZU6LVYFCuc05Cq56mVTUXM7Yn34XDURSdotC7P4zGLzn7o8cvHYaPVQYX1byPplUgEAjBcYr+32Z9J6fV8pGmzsGcp2UHNO7m/T0P2AH/nMtx3owzlVaBQDDo06rBG9uyFU/x4PMWTMEzq/TDOx6tlnjOK0arwqMVrcqZuiV+4HrOS6ZV2woIL3NdZ8o9J6VVaIR/mbRq+2s4FVoNCC+VdU95oFVC0Snnc/R4ZbQKKH7s06rn44h1FK16Xhn/L9/bU6BV4hgMreqztY6WJZamVcoJ/m54iB4o+PQzv8G1b3oLbACFQkGIyjAOQwwUVLYe0AMRpIhioYBAwFZI7jM5yz9A27YQq6qWQ00mJ0UJKORyQkihSAyhUBj5XMbfBE4pEonKJmZzGSHA2romjI0OyCr4XSFfkGuVIMyjuroeth3A5MQIQuGIzMEpOkroBGzM6FqA3p4DMo4rAiiIUCiEVGpS5sXrZf62hXAoinw2XWLWIrnVungfEYTMkddyLjPnLEXX3IV45vEHkE0nZfO5pqrqOsHbfD4rY0QiMSEAXsO519a3YGjwCFy3gGAwrJkYCU7tcygclr2Vf8W8QpBAAJFwGFnuXyBwDObgn7TMoVDIifDhHvJ6Kh1KuXFk/cViQe6NRuOIVlVjbHhA/s7lUz7yuGUCm/dx7bF4NfK5XEmxsoDaumb09R7QiA45G95HXDKCspDP+b+XIyfPqKqqHkU3h2w6Ld+FwxE4jlvCP56p6yAYUAzV8xxZS7HoyNrM8zg/El08HkexUJTx1b54SFTVI5OdFCXSLRaRy+VKNG7pex1XKYWWYkYoY+7E5arqejQ2dSASqRI6CIjypvaIwH21Q+Ep8/aZAxU014XrFuEUlGDknhAveDbEz2w2iUIuI2tPJGqRSo1hYmJMn5cj98diMR93uRfFfK6M0BW+BoIhhIgjQoRKoeW/oG32z/Pn7GnGJHgajSEYjiCbScu5ZLNZeWYkHEVQ45QSXsLe5DxIc2o+ATQ0tGBsbFgYSyQSkTPgnBWtFhCNxFGVqMHoyIDguMExXkcG2DFrHgb7DiOfz8jZkTb4nMnJcZmfWTOXGQ7HkMmkRLE0ynuJVgOCHzwfChbSQ8fM+ViwZDW2PrMRqfERUbr5eayqFsFgAJlMRs6YdE2ESKcm4BSLqGtowcT4MHLZFILhKJxiYQqtBsMhFPMFdY75nOKbto1oJIJ8Pu/jgK0V4HJlgHyO4+ULijbCoYjgYT6fkzVwb8LhsDyH+066SNQ2YniwV56TySZlXHm24/hnqvaOtFqjjA1H0QlpqLGxHb19B5Rixm2zuT9Bf64no1XifjASQnJsVNZBJczQgVknz4jz5jxORKv8PRqLCr/2aRUeqhMNSGcnBLdAWZDN+PJoCq3yHOwSrZbTQSyeQHPrLESiVT4PLFdm+YwAaVXLAJ/OSfueq2nVkfP2HBf5XFbG49kU8lmfVjnvurpmjI0PIJ1W+Ej65R6QD6UpFzSeF3LZKXPkeKS3EPeCuGEHRdkirQQs21fA5ez0+Rp+w70JR2IyH9Iizw+ieEcQuOV97/v0D279Ia684jJEI2GMjo0Lkfz+770Zz+/aJYe/auUKdHV1oftgtwze3NSAP7zlJlx44QUYHhrGyMioLPhd734Hjhw5gkwmK0hHoVRTU4UPfOB9OP+8c3DhmguEmfb29arDLyiBxUWR6SiFoqAVAwc5EbBaGy4n6FBIC80cMulJ6isKSeD511RVVWOg/4g+mLwQEDeMSE4ijkarUHSUgsDnLVq0AKtXrcRBrtFYxhoJwsKAPGEERFB+zPkMDw3J+J7rCHLws0AogliiGuFIRBCKT5icGJO1UqlKpSd4wvAsT31mQRBJlCW3KGsyGjX3NBaPT/GEcHAqCYI8xaIwMl5vBJqv7QUU0RQKRW04lixRR7RnS5hMMBCStZGB8zMl5mxftTSWCJk6z5PXBEVZUN4JMlzOU4jGVVotCZlnWnQc0YcpiBTTUPPgfrrKAYFCISv74WqipYKjfro+s4KxgEQAGR6u7Rhb6fTcP86L4wSDSnkxSmY0FkMul9HEURRmzhOmsOTf5lpRsEhQwaA/tqW9JrX1jaKg8t5AKKQYjqW8LDx7WkSGWSvroGRRG2Zr1mY0b+XRcZQF4CplOl9II52ZVEpJsaCUqUBQhJvjKsW3oBWycCgs58H5UQhw74My94AICrGeifdaITDnqf5BW9jqnKk8iicJrijORuF14SBET5QILEsEAGnMKCPGOqACC205UGl3tDWvaFUpDsnJcZ+h89Q4LwrIquoajAz2yf1UHJRFRCGpzpKKp9Cx4wjT4rmJkkqcLxOUSrEK+4YgjQh+Q4V8YmwE6ckJTSO27BsVvGisGvF4QjHXUBSTY8PCg7j+bDaNQjEn+1IUQQe5NxQMqfmR0WsrjfOLV1WptZYJQwoUUVIpHKAsqoBWuLSTzccXw5hLngxPM3NFt+IhgiVCjnMSD0HZ6kXxIa0GI3CLBVGUiJeipLpFJCfHZJ5GwKl5kgfY/p5Fo1Hk8wXf2cS5K1olTebVOso8RGqOJVo1HjtDq+SZPq1y/2wI7woEFa2KQuCU+FY0Fkcul4VtKbxSe+3qPSxqvFJCWWjHthQdFxW+8Tk1tfWIV9ciFCStBpWiZinPgdBqMAxP04HZewOGVg1dQgt6y7Z9T6wo5sUC8oUskqkxrZTkxYvF55FWPe1ZooAmXZIOFE1B0ao+d55pjrTqKoNIaNWbalD4+OLTagF20NI0WCgpJXAQNK6Mt7zl99HVNQvXXfd7opHeeOMN+PkvfimT+NOP/DES1TW4/vobRHh997vfxpe++CUkJ1OIx6tkkPnz5+NjH/tzNDU24Stf+Xu9AUB9XT0uvHANvszPAAwMDGHDRRfhyaeehmVFsW7d63D/ffdhwfy5uPKKK0WJuOfe+9HS3IQ3X3edMK+HH9mIAwe7ccEF5+Pxx59AKBxFNpPBypXLMDw6isOHjiAej2LF8mV46KGHsXjJEmQzOcSiAVx80XrZrG3bt2Pp0qWora2RNW3c9Ci2bn1O5k6r5IMfuAVnrT4bmzY9Jh6FNWsuwKpVK5FMJnHbHXfKz1WrVuHcs8/Gs89uw/YdO7F27YV48okeLFg4B6lURjROywph2YoVOHB4EOlkCjNaE3jqqQFcdsVlcsB9g2MYGMng8IHnBRGEYIMBsdwnJ0dhF3L6kGyhgFA4hlw2r4lBIVtOtHjLF+bKinW1Swq+q0kJpKmM29d2tdtyfGzI9z4UHUWg1TX1yGYmhLCEUZBJ0yIL2VpJKCDgQXtzSsRIBkpkbWmbJXuIiWFRFMinjDJBrZ4aOwUDmR3HKIgr01IEpwWoEI3WTI0gtkRDD/vMywgpCldaICQoKgvKq2ErRcB1RaESItUCmspU15xFGB4aBDDhC3USpSI2T3s7QmoPaXVF40oQcK9CIcUobctXPujJEtessY7LLJFyL5Zx4ykvu6fGg+crKXLuIiBzEo4Iadep8STZMo7lM1CltVtamIWE6cmz6PYsOqJYUqFVzy2B7/3UCoexTKhIHO19yOaysl6l7JU8WOY6mYfl+s8iozb32sEQUHB8Rix44JTchJFYApFoHOnUpJwDz5dCxVg3VLwzmSSKjloDny34py0Xb+qs5BncI/7jdRTwmdQEUpPjgm9BHSrj/CjEG5o7kKiuRi6bweGDu0QZtfy5B9HVtRA9B3f5nhVaqrUNLZhMjsHOZeRcoGkzGIognyuIUmTWX9Q0YoS5cRMrg1PMZN8iL7cW1VpKSil/jo8OKQuN3s6CB8dzkaipRy6TFIXKuHv5PAoz/p3nXtkBXwkrKfwB2CEbDU2dcvbjw33iqTDKZolWi4LHxC0aY+W4zM9cVwlwQ6tK0Coc5N4fTatBo0QTN0WxV14cZQh4mJwYVbjhKpe1a3uYMWsBJicmYNsTYi0LnpbNwyk6JVq1bMEZS4wkRas8x6AN7Tkswgq8kFb989JhCnVO6jvXU8acLeHBvG/QCT+wPBHInGwsGtNGqVI0AppW+T9+5mhviSjj9GIVi1oxteEWHMXHivkSfy4T6uW0Sl5HGjqaVpXxhVJs8Ic//G/877/+Gzie0a4jmDO7SzS2/fv24qzVq2SRfEh7ezu279yBrc9tE8J497vfiT/9kz/DpRsuQSgSUdfxwHUsIJvJIpehRpNCOBLG5z//t/izP/kjVMXjaGpuwpe//CURutdeezXeccP1mDNnNs459xwMDg7i3/71n1EVi+EP3n2DMNR0KgnPcvCFz30GH/nwH4mSMXPWTHz73/8Vy5ctw+svvRwLF8/D4sWLcNG6dUilUzKfw0d6ccUVV4gSMJFMCmHQkmxsbkJ9XQO+/4Mf4NrrrhEEfeM1b0Aum0NTUwP+/CN/jNetXYNP/+X/j8GBAaxevVIE0ftufo+4cl9/2QbMndOFNeefg5WrluG8c1biogvORSRk453veCtqa2tlXZlUFvlsFiP9PcJ46ZojgxHt0Q6itX2OsmqtUiwmm0mhoalVkMfTTFd+Oq4wfLpeaLFbWvhXJeq1QCtZ7GJFagIsF+qKUJWV53lFxXDgiTuzWHTFTUptH1ZA5kt3u1gY4tYsi1GVuU+puRb1NU5RIZxYf74S7Ii26nq0RkufWyK4jfCihVQiNPHiiOV1VGTNcmRtTS2d/jzyubwvMA2Sq2tRcqc5DvqOHKSEF+Yi+yQKkofq2gbNaByfWZMpxOO1yjMiyk8YoVBMrIZwuEpw0hBbyTUWENdsuWZtYqTlxKmYQlBbjeqnYkyeztEoiCAyipoIJe3ypwvbsj2ZayQWQ5GeEYYVKOiKykoinlLZgLEWo1WQzRVvUghBrlUYrRIAQe2dgPZg+ExTC2R+x5i6YubK/cznEicpiI3C5bjK05bLZHzXsNobbU0GbFEA6xqaRUE3CpBh1sRrKlEFwREKKI6pLJqgCORgyROilTrij9p7+AoOj59C1QraviBzqCzSNRutFg/YypWr0dDYhGisCiG6lUMRTlBobJS0WigITnCdkvvgeejonO97TFyfVtOyHu4Bz9nRljppmrQaEVqNK6EbCKG6tlnRIpmyxguz/2EdlijHnWg0JgqFr0jTs0ZadVwJQ5BWxXVLT09e5QsERAEonaPvpaMlyPCky5yYkIRDg9pTWk6rtJA9KG8RcdLgYSikwgpK0fa05WlrHAr7RkTJU0UFwUJLa6f2LHiKVssUy+PRan/vQcDTYQ3JG1K0Gq+qQbwqIQqEuO05h6At4TGGirjnPDN6Xrj34XBcK6Yl3qBw2NBeiZdZVilnS3ioEZh2wP9pFCW6vSWELB6lkL8e4iP3Xqz2WByhiAqxxqqUd5g4SxxzC2W0Koq3kskMTZNG6U0gnVIx8YTPR2SOxhsnIbCgmr8dNPEFC7jjjjsRCVkiEMUNm8vg/R94P4aGhzAyOooP/c//IRv6tre9Xc7h77/2VXzqrz4B2hhXXXklEtUJWdTaNWtEgxfh43poa2vFG95wFV5/xeWoqorh9ttvFwaxdNlS/Pznv8B5556D2267Dfff/xD++n//Ldave51oNo0N9Zgzew4mJiZ08o0lsWT+ftH69Xj0scdQ31CHpqYmWcMvfvELfPSjf45AoJQssmTpElx37bWy4MceewKHDx/GY48+jiM9fSLkqxK1eO973ouBwX5xsd14ww1GWmDZ8mVYvXo19uzZi0s3XIrPfvbvcNfd9+K2Ox4QAqKy87WvfhFXXvX6Ut4BgrjrnoexfPkcrFo+H/fd97Agy6xZM3HV1VegpqZaxoEmeGNp5XMpZNITwtzJ9GjFKoRzMCFaq3auaV8190BccU5RWdJiCeYwmRzVBFlKziDSEaFLVpJiwsYNLgTuun5cLBKO+G7rsCCkrV1WAR36KChN1rIltBGYItCC6D+8DyNDPUKURe2iM+EKEnvnrAVEWYlnG83dkXBDVluOpdi1p60KYwF42rpR6w+hqqpGlJeSIIKO+ZfcvlaZNemHLqhZ59KyTxREYrHARmpy1CdMWQ+UO72huU1whYyYY9GNR6FO9xoVXzLg8vi/EYpG6eE++IqP3j/X08qZdlHalkrY4TNtsR5UTDabS2uhqLR9Y/nQhWojoPI/GGt1XYlBq72xNSMKaIVJeUDy+bQIRD9mWpbrIImurhozIsK0UJa4p6xfk1im4vqe7CPHqqlpFLzO5dNiofJ6WYeeh1EWlDtSeSYYt2f+hnK3q/ivhILEdVsUpmcUAT4wVlWH5pZOeRatago4owwmEnU6BwJyBoWC2mPmeNBiq69tFiuftMLvwxJ2UeGFLVs2Y3h4WDN6jcdWQHA/k01pi1PF6h2Jh6aRnBxFIBAWHuJoa5H7Tlo1rllDq9A4K2FEnqW4u4sSn7dMwpyWZQVRHqJaUKgcJuKVOgtHh/4UzgTE4xAWejW0qpRL+J4tPiebVbk3CZ3TZFtqT6lIjA0cQV/PHlBXNrk1SliEZA/aZ85DMBQTpeZYtOrnUEqCluO72f0ES50ESbqJx2tE4QhqIYeyXJ1S8hxKIQHP888km00J3jB8p0I2NnLZSfHkiEeCSgtUuKexuQ2JmjqfVlWYJqZ/RhTNhiO+l6pkqVsweVWyDs/1w16ONqRMOMUIfz7LhHs5D86T+2OUVjGWScPMoXIcUTQKWtkiLqhwpe3zKJ9WgwxJZ6d4Ww0/M3sj9Gdbgt/GM2AXxW2n4gX84C8/9Tf41Kc/JcRC9/S6dWuxbdt2HD58RKzmmTM6sWjRInzve9/Hxz/+Cbxu3Tpc9YY3iAud2tJdd9+Dd73rRl9QcDK7d+/BN7/5L/jq338dA/39mD17NmbN6pLvlixehAMHj+D8889HJBLAlVddKe71qupaTCaT2Lx1K258x7tV4ohoyCSGAt5xww2YN28+GuobxPolovf1DeC2236Fm256D+rrm0Up4N9//ucfxZ69+0QbF+EEW1sVwPj4CC65ZD2efOoZpNJZiU+tWLFCNvXBBx/CpkcfRXNzM/bv34/LLrtULKKZM9rFJbpv/wH88Uf+DHfccZcSamLBADt37kI4HMSb3ngl7n3gEdGgnnjiKXzy43+FTZseVQlGhktCJR5NjA1hoPegeA14iOFwyE98U8lSjgiucqFWlJhS0c8CFi1SCwnmH5gMZBJmgW4unZgFy0U2n/WFjDBSWn86pkut3yRLKTdR0M/udHVMRwQoGUbB0bEglQHrx6Rl7o4/B+V+VsL10MHn/Ti2b4HAuPHCwtB4fXVtrbZc1JjGapEEKFsJiVRqAv1H9uns+4AvwMWqD4e0O9Sa4paSRMF8XsaBjl3K90Gd+Uymp5UYK+Apy6/oKpd+RGnHIT8mpizWgDCPkO8KhnbfqTizsuQ8TyVCKY9KWayuLC/E0i5r11E5H9WJGmE+fLYSUgUVs5OYtrIW6YKzOG/9H8NgJlZqLAw7oPIWJGHNKfhKx9GMleNUV9cgn81MycIPaKUpnqhDTW2dTviMagbagZqaeoXOnsqGpnUEsTpy/pkUi8UyxUy5aVs7ZmHpyvOUp0qJK5UEKtZsVHBEMUwLyYlRDA31yGfJiTFJRBLXKc9B9CfHD43I+eikXuYTDA32CTMms+XZUpDTfTs+NoC+ngMSelIu5YLkttD1mUmnVJ6Pdrvyl2gkJvPoP7IfRBFbj2VpuixougpMoVVLK0NFP0SghJYS0JIc7CeWBZBnIqPORSHvIK1K8izDbbm89q6FdHJlRnAhqPFOVY2UEjE5jtoLhiCUS1pyC7SCUSg6/tyVwqA8OVR6GOfuPbzXz6gpGS0Kp4zXgjjFkKyiVRWW4HdG6NlamU5nkopWGdrS+G+USQnXBco9XLbPN0TJCamkZ56RrFNo1VQLaYFKWqXrXUI8rljER9Mqea2tLXcTXlN5AEVdseQpGaPj9jxvZTHbYjxBezqNB1AJUk++q6mpVbxLe4qo9JiEOKPo0CMCTasBK4CqeJWMzfWUjI8wnYei8NJIM0qtoVVFQyqsxDGZH2T4aODmm2/59K0//JG40H/zzGakszls2/YsEolqTEwksX37dvzoRz/B5s1bJOGN1vDKVSvwvptvxoUXXoiv/v0/YPmKFfinb35LYtKPPva4JNE9/dQzskGxaBSXXbYBGy65GG94w5USi167di3+8Z++iTvvvAtv/r3fw9bte5BLT+LDH/5fsllf/do/SCbsyOgI7rrrXnEpEQGvueZqXH7ZBplDNpvHRz/2cfzil7/C+vXrsHXLVlFCfnHb7WhvYzhgl7jr33jN1SKIuZn7DnSLt2Dbju3I51Ucd1bXDHE9ffvb/4lt23dg7969WL3qLAwNDeKRjY9i16696JzRiR//9Oc466yzcPNNfyAEufk3mzGraxaefnqrzKe/f0Bca0NDQ+jrH8TAQB+SyRS2bN0pjObyyy7GxZesR31DA3Zsf17HEh3NqJVA8UT7dXzmX14iIXGcsmzWsLbiLM1sjOvR3Gfcs3T11De2SvJeUDLkIURvLAYiiRFoRgGzy7M/ddwLGoGNNWLifkogBXyrzCSa0eot+C71gAghTt24so1lqJheKRtYhxW19Whi6Cp7VGURK/d7dYJxz2xZQgv3syAMfGqmPhWmmJ/9X15qp6zjomTBO8WCnyxFYUrllIyZFkV7x1zUNrSKSzZeVa32jQk3dK/pBEq6wcio6LkJCEMsiPKk4skBrQSpOLRR5vh9sWjOW1kyas90+Y6nYukiWLX1LAoIM39duu5qRDExbj0ToyPTV4lUns+EgzqRjwlgFHAUfLl8VgtqFW8P6JKkdDLpK07mhyRPBYOYPW8J+vsO6XhwKUFxbHyozDJT1rsdUL9TgbQ8SwSHHxcWrykTmJokMW2o/5D2oKicHipIpdIhW1tCoVKZqK0ULq6DSkUqxWReFZ82rnslDLIqY72mTuKn0CVrIjjEek0JvubSKaFT7o2rPSjK0rVe4PVxHKVkGiFraK4c78qFUkAnxlnaurbKlE5DqzwHodWmNlGoA2JJi7iSczEJV8ZSV6WbJVothaZCfga7SZoV7xTPxHNEsCua1Qq85yBCV7CrEhS514ZWFT4WNK1iCq2qEKCn91jhsW0HtGevWEaroRfSqlSSaFo1JXl+AnJEQn2qSijgKybkL6QXhkksXWooZ+h4qNK0Sqppb5+LuoY2RGJVSFTXaloNSVa7rI8htLByfdO7QYtdJVwWdA6NPZVWfTd8iVZdnc1oaNW4sDhnR7wyrp8MSAWPayXfoBKpDJOIzvWwdSKk5ecQGFol/ldX14mwppJAT0FA9jegcjm0RyjNXCVdXSH3b9z0mHf9De+SxCFVShBDPFaLVGYchWxWa+mlJAhOoLGl3S+fCOqNcsT6iIvGaBJZnKLjZ4YalzkXFI1XiSUciUb9JB5q46pEQSF8UVuG4m6iC5RjSzxQZSMvWnY2uvc9L4lkou0SGZhQU1UrSX0qTpRTzxfXSEwhhbjzVAwG4kYsJY3IYQbDmLdoFfbu2qwIAlYJeUMqvlGdqEe+WJDyoLxOpOK+OUXF5OxQACErLAI3oDNyqbAozVLFralVqyxw+K5gz89ULSVEuDrT1UKJeTIHwdZMiXE7A+XZs8pbEECcFl6kSiwRSAJTUawUTwsH40YSoRNUwjgkGfOlemTb1+BdX6M2YRoiOgW6IxUD8LVdE/emYjY5Pi6MPVFdJ5nOJCDj0oepcy6qz2j9UYiliKimrtO2/Vi/6zORvJSnZNJpYRgFR5UGmtpoSUoJqjg+maLJAlXJdyr+T5Q0QqemthnDw73CSEXDluQ/lZhmBSycdf4VUkYpCWCOEvTMkmayFc+ehM9MaDIjZv7TncY50ksQi1ZpT0jOjxE7+bzQCM/B0WGTXC4lLn/lilOVGouWnovDh/ZgeKBXhA1DTmYPw5IzUS1En0kly1yUti6ByqO+uRVjQwOyHpWZ78mesAQpX8iIxUI3ekFbfuZ8obPwRfDn8qKg0Vqg0IzEIpLs6GmmpXIeVImmSUQjLUsGvm1j4eLVGBrqx1B/j4+jtMh4fuJ+LBZ05n6pqoS06hSNexN+xrCUQenSLI49d+FKdO/bKVYutCuZ22DcoNW0YLLKsFDZ4TZikjWvvCaqVDTql6Jx3Gxq0k+gNGVdRUcxc8lE1vivaNBUW9hyT7lXQ+W1hPVzIsjoRD9jiRt8NrRKgc4cmNGRfp3f4Uj1g1HkoGnQ1pnaEofV1S2mJF0EvBgGrl8jbeZE5ZW0YPIblFsfgv8qGz+KifExXV1TpUsqs76CpErporr8NSyxYPIO5jSV9sTWuTqW7+ni/lHoMulOLFLPQzo5IWt2tIfKlNPSba4MhKIvLxQvNEYIwygtGBnpU7kIcnZQDeEAACAASURBVG5BCTXxXrqql65aj6amDskTcRkiomclViWJl8rzGZB8IOI2XfaZ9KRfgUKFVwSxVhxFgSoW5RqJd0vYJCshUoa8SLM8H1rTCxefjZER5fGhIDdll554V0PicSTfz6ZTfkKnykdSFVx1jc0YGxlSXgXtjXQk0Tcm/JV7zp/5bE6FQKXMzvPxjzgWuOWWWz79ve/fikvWr0M2X8CsGTMw0N+LGR3tYnmOjY3h+re/DcuXL8OWLVtw1lmrpZQjmUzTJsINb38bli1bKuVrycmkSmoi4yqLX6rs1aDWyJSLlx4AqVXUsYmsrsuVQ+PminbuYOnSxWLZU+EYHR/Tydmu1L/Srazcuqaw30UiXqPLM0yyU0DuueD8s7H/wAHZBFO6VMirunh+RmYLXdpGgrJ13KKhqUXGsrQrSpUneYIQjMP55UAUZLpUBK6nLSRHhKhkI9qWLlELaKHq6jGKIhjModplySs+c9VCzNL1+BR4ZMqurg83DNifS3nZGhWHfFoTiyrvcjQhmwQiTxr9RNDQ0OY3tClZ6vAzrW1dbmJceWJxaJc4TATBcyUJxXFzCFhBYbS0aDjPdDo5xYopuZiC2kUelLNTCgG0dRP0GToFI9fc1DZT5jo22i9jZzJpdZaBgHZbm84kimDU36qJDZUWJQzDOkZr6YS+vG+Fkpip9JgwgiL0OvmbCkcwFNVJWKpvgMqot8SdJoLBUpYlFQF6jQyjs3w3I3SJn+Mz3aKTk/2UGminKMKcDNCT8s88CkVlaSo3aQHxeLVYctzfQr6grV5LBDwFE3sWKI9KodQoRvDReHMUA3bFhV/0QxFyzsGSu5hzoQvecc2ZWMrdry1046Y1uQHGipScBI3zZED5MlqVZ7uOxLcnJ8e0cl1KijLx/HJvlCgNlq1rt7UyYQPJiXE/07mppVW7+JXyQnzhfTmd8OW6ppmOpUtGrZIXzFU9Dop53TxG15ubLH7oKolQqBT+MMK8lBWtniUNQqRcUyX1Kau+6Fc9QCdHitA3MVNbhYHy2aSeiyvKhPFMiTJte7rcMoyGpnYRhoZfmEYjplzU1kmvJk/H1iEwQ6tiuYrADUq+AvmSyi9Qwp24ZTwQblncWNzxpJ9IWJTuoi5dhDYoVOmjh3isShQvehzaO7owPNTn0yqVBCWoSyWUBi9MkpcktImXxvW9fqaixpT2BnWPA6FjSykPHD8aTkhidjVL18Q7F1FJZppWyXqY+K3G8vT/XDmv8gx26EZiUvLsFEs5SY4Ko2Uzk8qwiFWJPFBzy8p+imfNUXRNxZXJ0JRXpZp7IFpVJQZxXrv6lczUypl4TDw/dGlpnDW0avpymLwmT3v8JJjCzXrb296Cvr5+jIyMoKfnMG6+5Sa5+V//5d+wasUy/N3nviAbesstN2F0dAyf+/yXRWthKdlf//XfyKZ98IN/KPWDz23bLp+PDI9IiVVTYyOeevppLF68BP/4T9+SUrJFixbisccew0UXrReCO9jdjdWrz8LmzZtx5RWXY+PGR/GTn/wU7/mDd+IL//eLGBocwoc//GHRwvfv2yfa9rrXrcX9DzyIK6+8El//+j9InfuMGTNksw4cPIgFCxbiwYcexhNPPIHrrr1GEIMx9xkzZ+DQoW7MmjULDz34MN79rnfiF7/8JZYtW4Z4VVyYRl9vH279wa1421uuRUtzC3p7e9Hc1CxhgFv/6ycsGBQBRc1MtDvGrqSG0PYFvXKNOcoVCEcIjaESOVRTp6nj3eJ28xNJLHXQuomLdH0qFDSDKMJjMlo8jlQqOSUhzZlCeAE/sU4StbQiZemmB5ls1q/nJQnSyhsYOIx4rFpiOLat4p+SfZk39caKuBMJVdZWcJWQJOQLqqa0oC38Qj4gyVwqDmj7Qtp43YwbWiVrqVIXKoIiQG3VQUqsIdFuFSHRoqUwZdMIatpHDu9W8ShdyiHxUbvEKOB7kJR1wjgc411MPs/lCnIupoaWTIFavKn9lftdoxxYst7W9nNEYJIhkJEQB4Eg0pm0ik2nChIb4/kkauuU2430JYlkjp+NqlyVITis7UceAVGiLG39K+FBwU5gyRQbmHD/OAYrL6KRqKrVFbdzAE3NLRgZ7hfaS+ryLI5BRZFnV1NTg8mJcT9k4pV5PkwzGujkSaMQmvIv7gMbaSh3ftiPgfNWw5z8fgGA3xiFZ+7pGt5kclwxqrJudDzfwf7DynoNxpF3dYlkQFuOnu7VKNnjWV325QnOm5p706SOsXR6z8ZGR9T5iXKRl7wEerCkEQtpNRL3s7KpuDuuJe5m5T3JI+AGNEPHFFpVwlSV9pFOlIs8MEXImTmr3wuy96qcz5KchozMW9Uzm4Q5I9xDOmZtaBjaQ8n7o+JZyImnkmPbUrqXQ39/N+LRhEr8sjzlutVlarJ3OoEvXlWLYj4j+BLQmdzECQrLQjGPCHNZWAtNb6xXLKNVSyd1Klo1ZVgSu2dWubjEoWnT8j0XhlYZLyde1Te2o6W1TfJmpL+B7iJXyuoP+Xk20qiGzZBc5TW1pXsghWTR7/amkibzyggKqlI16RSnaY10xKZMK9pfJ2EzKmUlWgUymbyUFzP3hrTKkRn/d7xq0Stdp6gVGWVEqfpVIOhExANn+zknqgkM9zOdnpT5Hjm8VytRymBgFj9j8DlpCKZ6BtQ3NEsypBixTOjT8fboUbTqZ9BPKXW0VHVKeY8M6KRMW4VtbBMHy2RzeOaZZ3DppRskCWz27C7MnTdXkiZuv/MefOpTf4mrrrpCau1WrliORHVcHsK68zVr1kgm+oL581WW+9o1+LvPfhbt7a2SREeCo6tw1swZYsG988YbpCysvb0N5557Lq699o0i9Dm5Hdu348CBg3jggQdkwl/4wpdwxeuvwJ/+6UcQj0bx5S9/RWpGmQFPN87gQD/CwSA+8Rcfk6Q9WkRf/vJXNeMLi4ISFEQJyBiXXboBa9dcgMGBQdnEyckk+gcGsHHjRrS1teHJJ57ExkceQWtrq1hjTQ2NeO7ZZ/Hoo49hxoxO9PcPynpcD2UWh9IaiaTReAL1Da26U5JxpSuCC0p8M+e7zsKRsLYmgr4WbOo0yYCM28fUGxIpqR3SIKSby5Ka9HwphmcsZ51Y4ukENmOF6tQspFIpQQLj5jRWqLJYHHGt5nR3JKusEYpkvEtyTc4PEaisbuUSl45g8YQk9Ei9J2wpN/K08lJq+qGscls3VmhubJMypdr6ZimhoTvRWBVkJjEyLksx26p4AgO93Xj2mYcRjsRVxrAusVKJSFMbRTg6kz5gR1T5k65/J54oN36ptI1uZ9PxiyUuAa2YkQmxdIZZ3Lw/GmWtNC2AalRVVaGurl60/46OmWjv7BQmzP2T5DcRBPAT5mydtWzrGlmTLBjV4SdjuVFxZemgHQj4Gc/xWMzfS/gxxIKEv6TTWzAijTkkLCGJfznR9KWLlWnC4idPen4iVkHXuRuPCYzlqK081TcgohlwUBi4OcdyC84oCSrxFLpBlOfHbP2adUlOU4l2po65uX2WEhq0pIJhiW/SJWqye60y96vJ51B5FqorYnVNM+rqVRlYWBIrwyJUpPzJQ0nZtZXSIUlP0TiaWmYomrTgxzUZTjC0avA8FFQNmIKhwBTaEkWT2f2aXowni9YUPQkBC+LqVUpvwW8S5SdfakXB3zs/x8PTSmymLGELOsmTYldZj8yDyGvvJspCdVSqSauO5iGiJDAGbCmDo6hduGyExZCEGBGBqJ9FL0lt5hQ1fRMX2RGQii+9K0y0NLQa0HRHg4CVOiqBMC4hpKcevVfwxyiSUh8eVLQPrxQ/d3WCtm0ZHqAs0Yh0RouqzoAar2jg5HUXOSqaDCu6OmN8ZKhXPD8cIxIJHUWrdUKrbe0z0N45A9WJBDLZjFSKWBIC8DSt2n6Srq1j6iFdN0/eUTLYVLhSGU+2Ds2oZloqcRc+H6WyMDo8oL08EakkMbke0o2OtEojTYc8y/OZjJfN0ZUpflVAWYWEnOdNN98sneJmzpiBH9z6AyxatEQ28j//8/t44P4HcNFFF2H1qlXSMIGI8A/f+Ec8/PAjWDh/Hrq7D+Hsc872GSKz0rl4Wt7vfe9N2L1nD/r6B/Dd7/6nZIQzg50W9L79+3DX3Xejs6NTytUoSJl0RyVicHBADmn3nn2CoNe84Q3y/fZtO2STLl6/HqOj4xgbG0d7O1szJjEwOISNmzYhk84I8710wwYMDAygpYUW9Zh8P3/BQuzffxC//vU9mDN3Hg52H5Y1P/usSqbbsWMHOjtniDKRTqXFI/CWt/4efnXHXYI8w8OjaGlpQSwawe7deyWGbroHEYHp4pHkNqeAifERzSxttHXOLnMjq0NirCSdnvAzS1VzBVt3tVMC3miJKmHKlfKsnDRVKPquMCHOcFgQ3RfYJqtW11Cb+KZq/VpENF6jLGEdP2fCEhk0iYZaPZvKkAGJK8fUaXKd2mrwoGPLwsxcFZe2S8xQue0Kunue718WL0BY108aQcH7WUsaS9QgqOOCZIKqHahOzBMjUlldIR3jnxgfQpANd3LpssSi8g5oCoJSVuSJZ4MMIRSLq37UemcdETYFn6hotYlSFQhLLasthEZXsarTZ6y+tb1LvAPqTKoQiYZlXpGwihuqjlWWnxyj2nBWiSVtLE5Ha/ZFrRjR8splJpFMTaKYz4qiR2aY1bF07l1E8lJSOjFHWRKleK0qO6RlkEjUaIHpSPKPYZYoSzwy+QtKsDiqk5Z2FXvadc8rE1U1Wvh52jIq+jXlShgbt7sSAKbdcFE3+hCrK6iqSsx9pRK5UuIYcZTNX1QsMor2znmCB/RcGTykomncrrIG09FLJ5WZrHk/BKA9LcrSs0v47llyHtI2U8JrA361CWk1lZ4UejcClh0CJdfBc/w5G1qlS5W4UJTulqYm3UUVWySzRlt3/zPNnSJlmd9GmYJOuDMKBXT/D6Uc16hETj+vQSUNSsY3S/Wq68VL6ie+lSXNqox6zw8tKFVeWbO0zE1oRGVi6wTAgO77bhJhLdOwKCxxYNZF19Q3yd7Tki7q7p7G3a88PiqTO6i9PmNjg9rbmPENHOPSLuufIoo8dK6TlJfFYiKodad9aTmuEk1dn3eoLndhoY1YVUJc4J5ryT6FAjZmdi0UWuI98XgMsXhEKwhh3YdfN8kKhATfqAQx1KVyKewyWrXhaDqgkpxLTyCZSvr5BQx/sbwRmlYZ86YsMK3KTT19iVZV/T+Vb1ufm2mx7vNvfQ7l5bakVTEGNI1KXbrGobjgXA7WI49s8t70+28TjUQEogU/OUW1I1WaaEDHFlXMJ6B6NOeLcKHcM7TeGAMyPn8ObDpGyd+hqI9IUjaiu6FZumGCaOI6Bl0oqtISKZ0I2PrFDY6PmBRudEcXpE5P1V1SgAWlh7AaQxK2HFVPKRp2KCKHxfIUIqgrLo+U7lKkEIvJTczwtU1syVW1nirr2itzF5umFtAuTJ2arV1uRJqcuKSCqKlrUAkgGoEkKYmtAKUOPOu/RMH4lIigtMJNLXF5Uosqu4jIsxWDUFqv65SS6mhZMLFDlTKoHsxMajJ9ok02dinm55RaULIphe7TbVyrEj83HdZ0jFC0UEmgjIu7icxexRRtv/e0eTkDhQUFEXSzm9JzlQCgtj9zzhLMW7Qcu7dvxq4dTymt2w74L2Fg8xYyUYY4VIyQxEACTvp7Y1zZ5cmbZA7cW579rDmL0dw2G5OTwxg8ckCeJbFp3WFLKTe270Jl8g/30LjPGFMkbr/5rX+IptYOTaSuhBqk/lcnqIxPTAjemn1g/gWTAQvS4Syvmn7k0sqyYnmg60li59hIv5wP10T3J3GRJYFF3eUtLklFE7pMUFmRKEvAsoNBzRht1bVOXKsZtc920PcYWeJ9iMp3wqgkc7hK9TIoqxcvZV8HtBvd1gw3qq1u1y9LNJUWYsnol6yYjncU0PBUG1WrrEmNUTBLQt4R61fa14Yismcs5TTlOapnvOVb+nRj0/1uugd6+n0QpCdpJap6h2paVkqByoT2yjK0Q751RD7CpkI8Z1e/O8A0N5GeDcw2jkR0mMHzhZBi0MWjaFWXdTFPp5jXQjisYudH0apqnpMTpYdbTFqVF8GQjzEJ6ji0qrqWqQZOvus+pErZyjtImv79pFVJyrNKLYiVm97VWfuK/+V1HN1kmJvcCmkmFI5ID4kFS85Cz6G94iVTsfiA38SKxg2zy8fHh8TTQqEvydKF7JT+5OUJdNI8SUJjntzfMWs+2jrnicLed3gPUslx3aujpMAbfqiaa6mua9l8RmrteT3nc9U178TseYv9qgTmlYT8ZiweJpMpqZbi76RHlilStqiSs5zPH3g+7MbHsyO/Gx3qlR4tnA9zAphYaipSuMEMy0m/93yx5L0tFv3KE0vjpCr2sEVWpjKTupVzUHiF4Kmn8kdIO+KCd5QSUDBeWdM2XL8UTLwqDz++1bv2PZ/0XWfQb7IySTaSfGI0/LKaQkvHfgzCKhedyhKFTtLyEUvXDEv3sLIXipQSrIIaEeG7jks1MfCFod+ZzFznwb/G0z3O87oUx1hBukBVLDO6JYVgtUvRIKGF8rccwS/XMjE/P2/caKEamaBjKW6Ztg2dkFbeZhH+W6fgP8t8KvWUuuY0oBMdyvuoG/cqXvA2ulIvYpXs403RqKl1SwKeW/IMHD1PsaaoWNmWf6aWjkehLOO+5BIMaCYOv0c2dGMU0xCEZ8DQQOk8VaKcuNegLO2ALlehBUjC4EsyGptapSnH2HD/lL0zlpXZb0OMprWn2WLfHemfoS2aMhupcJ6NLZ36RTmqrn9iYkSEq4l9qoQiVV9q2nWq9RZ1XFXtEfu5L1i43N+rdDqD2pqEfDcxMYlcviBCjAlDYqVaJe8IvKmxt7yEUFTuQHJSVQKUu+gMuigccacodxKDLXvrnGWXrCsDlmkLqdtgGuZuGIlxr/qCVidqemW4VqLVgN8c6ES0at4WaPlWm6XfozDVU2CSO/29Me5+TRcM3TDG6Oo3s5XesGWXuu29gFbL6M0q0aixII2FXer8Dt/TgFKVnumKMOWNa4Ze1Dk4msG6fm5ACUq0a9ZqaFVloJe6BfJzCj3SqCQ56UqR0n1T56nixSaDvYTsfsa9Vshcr9SspZxWTd27yatRlUVZneej+ajrlhQgXQbpueqFQVKZFE+gqbldFOKRwSP67Mx+G35vaNV051PGi6VN8pJALu1aJJqQzHHyrPrmdnFHW1BlX/R4urqszIT/Alrp9D09fhfGEq+jYrhk2Vn+vmdyOcRjEeldPzGZlHbdRjGkwSAdG23b9yQQz00yJpX7on7XiEm69nRr6SlJuGVd/8obwbi6Ugk6J8E9Aa2aPg2ukcUnoFWYCgtTDvnwU7u9N37oG1MQt7amWtL9axJh9AxM4uXC6iUz8NyePjTXxtA7NPV5ZHrRoCcWVyqTRG3VC685EfBgL1zZhf2HBtAzqNxP9dUxjE6kX8Ssbaw9e4688euZnb3+p52t9ejpH31Rq+fLaBZ01OHpnT0nvba+tgqj46lTem4kUkBNzMHgWHTK5y0tKYwMVKH4omZZgQpUoAIVeK1B8FjrWb1sMdYva0Ag6iCXsTGRzGBuVzOSqTz29wxhxbw2fOprv0Aqf4x3lx8FLe2t+NT/vBbf+O49uPGa8/DI5oNoa67F7p5hFLN5rFkxH89s2Qon1o4dz2/FNZecj5baOD7zT7dhJFU46fPjNQmsX9yBGy9fjTue6cb8rjq0R4M4knbx8INP45l9Q6dwZB5WLFmIseGDuObiVdi2ux9LFrQiEQ5jZ+8YChPj+P7dW07p6K+8eDWuuWAO7npkL3LFDJpaY2hO1GJsLItw0MFI1kPCcpFoqMGKBe34xGd/hEMjyZM+t7l5HGsWZLBnOIQrz+tFz0A1ZraPArEg0t1hNLZl8Vf/eM4pzbECFahABSrw2gP7eCu655FtiMYi6GypxYLZrRhIFZBJZ7F6yUzEw4EpLrQTwRsvXop7H34Or1+/EoloGPO6WtHRWo+O+mrc8IZzpUY1Gg6hZ3AY73vrZTjU048Zs9qwsKP+lDd7yaIZUsf+pstWoyERQ2NLA667eCkWnPIzPIyMZaTtSEdbPRZ2tWJGay0SMcbAPGxYs+iU58KexxM5B7M66nDjG8/F/M56zGxvxLxZzejqaMTszibMaq+Hm85h8+4+RGOBU3iqgkvX7sHl5/airSmNxXPGMaM1iY7WDOqrHBRwaudRgQpUoAIVeG3CMV3uc2c0oaOl9oQL3rzzMJLp3Ek3Ze7MJnQ0n/hZx4JdBwYwMHJy13t9TRzL5rcf87tDfaM4eGTkpM9IxCNYvXjGcb9nvOnRLftPad5L57WjoTbu/11bHUff0Djam+vl1anRyFSnyLY9vS8yPKBg7pwRXLuuG9//+XIMThzT0VKBClSgAhX4HQJrX8+w9/AzeytnXoEKVKACFajAqxTyrIXvH0l6TbUx1WbyFN3opwOYyce6c2b8cW5shnImARuBJBKJCu5XoAIVqEAFfuswmc4rgT7OF3zoTlBnEniFPCKFlC/Yz6i5eZ6UfMycOfMMmE0FKlCBClTgdxko0CX4ejhVlC5CR8NvNj2I9pldOLhnF2bNW+i/9GDvjuew6oLX4bH77kbX/EU4tG83Glva5O071XX12LNtq9TgLTv7PGRSKezftUOaDbCbWt/hg1In3dLRKbWVwwN9Uih/4eVXqZ7SR0F9dhJNxxHmTMz7yjf+Dc1N9Vi35jyk0hk8v3sfGhrqpLPb5ue2o6WpEQvnz5FWpGwswFavN73zbfjRz26XBh0rly3G4NCIbhsYQF1tDRJVVTh0+AjGJyexYd2F0jrwWEDPQQUqUIEKVKACZwKIQA8HX5hpzUSwYjaD7t07peHGkf17EE8kkMtkkJmckBao7IU7c/ZsTI4OyZvX0hNM+opIG8zZ85fj0J7nRUiyBztfetLZNQcjfT2qZYNTRKKuXt7CxBcXFNIpxBsaXjAP9uBl69djAa3keXNn49qrLsc3//0/sXL5EqSzWVx97tkYHB7B4d4+v1tZLGYjViggnc6isbEJ9fV10qJy5+790g+d3b72HzyE885Zje7Dvdi5ey8WL5yPjo4Oae94LGCf+ApUoAIVqEAFzgQQl/ue8RdmWbv6fa1FtqwsFkQoyqvjigXpmGQ6ybExzFB/H+r5JrLBAVRV18hnbGTfc2C/WOL8ne+tZgct07ZOumlNToqSwFcg1tQdu8Ss3c5izqxju7WV2zsn7Tl37tqLpYsX+L1v2UUnm1NvCauKx6TNHxvmsJtXXV0thkdGEYtFxXJnO8C8dAFyRHhz/mzBSMWEXZPCoWML9KGhIXnFbAUqUIEKVKACv03wY+jP9734sqnTBY1RD82NdWfk3MYnJjGWtU7hygpUoAIVqEAFpg+KJss961VNGcQ7qjvxiT6frmsr41XGq4xXGa8yXmW8yl6c2uf0SEsM3fGAb33ts1h93gbU1lbL+557+obhFXOIR2xU1bfCyRVQyI5id3cfzlq5HAXHlqYuh3oHpBd7vgDEo3yLjo1UJov6hgakM1l4eb7edAznrLsIB55/Dh3t7di/ayeKkXo0VQfROXcJDuzegU0P3YUZsxfBC4QxZ2anuPUXLF6Kf/7q/8Hic6/AkgWz8PijG7Fk0Vw8vvEJVDc0IFvkS1c8JCJRpD0bV198Af7r57dh1erzEHDSGBrPyDvX08kU6mpjONR9BGeteR2q47FjbEkFKlCBClSgAq9O4Du1lEB3gc6uBfLWlkxqEkNHhjE4AbR2NGHfri0INYxjTsccee0nX1f37LNbUF9bj55DHnbv68bqpXNxpJ8vlLfhZZNomL0M47u2oGekgJXz29DfPyqvWN2141kMDgyiv+cQqps7kRx1Ud3chcnJSXTNXSSvhktmXezbsxOxWB26FixF14IV6GiIYOvWrZgYHweqmjF/znxs3d+NBV0tmMgUJbt+z85dKHrny6voDh48iICXQTLjYmhkCE42j3iU70WKwvUsOCdvQV+BClSgAhWowKsGKNDF5T5WqHpF5tzf24PW9s4Xfd/QYD+amlunfDY6PIT6RpVwNnjkIGL1bUjEzrxa+QpUoAIVqEAFftuQzeukuN7ksbO4K1CBClSgAhWowJkPrNQSl3trTeW0KlCBClSgAhV49UJICfR4NFw5xApUoAIVqEAFXsVwZjVIr0AFKlCBClSgAi8JxEK/6I1/iGT+1RFH/z9/8mZcffUVZ8BMKlCB6YVsNoMnHn8M552/Rl5Q9HJhcnICvUeOYOGixdi65TdYsnSZvI+gpqb2lJ7cffAAZnXNnvIZuzL2HD6EmbO61N+Og0c3bcSKVatw8MABrFi5yr/28KFutLa1SyfG3t4j0oI5HK54BytQgVcKRKCP58JIuXFcfN5C7D4wgANHhl/w+Jlt9TjUNzrls87WOvT0j2H5gg6MjKdQFYtg98EBnL9itvydyRXkewMtDdWYSGaQzRflk5pEVH4undeOLTsPY0ZbvdxfPp4Zw4DjVTqzVeB3A37+0x9j48MPwoKFQqGAifEx5PN5DA0Nyut7KVz37d0jAvLsc8/HIw89gDVr12HzM0+ho3OGXLPhstfj7jtvR39fLwYHB7Bw0RLMnj0HX//Kl/Dmt7wNd/zql7hw7euQTCblvQdXXHU17rnrDixfuQpbN/9G7r/zV79EW0cHnt+5A01NzbhgzVps3boZXV1zpBV0KpXEr+++C4sWL8E5556HD73/Jnz04/8fnn7qSVy84TJpx8w5/uqXP8P1N7wTu3fvks86O2fKvN5y/dsRjVZ6Q1SgAi8XguZ+CmP2Rr987WJpIdfRUofBkUn5OZnKYnRCtYctFB0RsvsPDyMaCeG7v3gMN159LvYeGoJu745cvoBMtoD3m2dQlQAAIABJREFUX78OY5MZBAM2Dh4ZQUdzrQh5avXskx6NBPHLB57FO645D7M7GnH20pl4bs8R6RPPpjV8aUx9bRz7e4ZF4D++9UDlwCvwOwNt7R1Yd9EleGzTIwhHIug90oOuOXMxPDSE9o4O7NyxXSzjbCaD+359N5xiEU898RjaOzqxc8c21NbWiUB+dNMjmDd/gbzlcOXqs3Dfvfegta0NDz94PxYuXISensMyVjgUxn//8FasXbceDz1wv9DpU08+jiNHelAoFlFf3yBW/k9//ENp/DQ6Moy3Xv8O/Me/fQttbe2YPWeuHM0lGy7Dg/ffJ3Pcv2+vfDY2Noply1fizttvQ1VVApFIRBSC557dggvWrsX8+QsriF2BCrxM8AW663qYP6sZyXROfqcg7mitw9BoEgd6htFYlxACnzezGeFwEKFgAOlMDqsXz8Qjz+zFhvMX4qlt3egfmsTlFy5Ge3MOj23ZjwtXz8VBbfHni44oDcFgABOpLBw3jELBwcNP70FrYw3S2QJy+aIoF+lsHoF4FP3DkzjUO4qZ7Q0VgV6B3ylYteos3NPfh3ffdAt2bHsO51+wBg2NTeKKj8Xi8jIhCkfHKYrrnC5xCvia2lrs2b1LrHXCu/7gJhzqPojXrbsIjQ2NmDFzFv76M5/Hs1u3yDNoYbe3d4iFTvc7FYB3v+dmbNr4kLj7H9+0EevWX4zqmhoUi0VxlT/91ONi7Tc0NOBtb3+HPJ/CnorCLR/4kGpG6UGeL29crKrC9m3P4bo3/z4ef3QTlq1YAcuyce75azBzZlcFsStQgVcApA79gjd9DKO5V0fTln/4izfg2mtefwbMpAIVOHOBbnm6x18J4GuCG47xauMKVKACZxaIhX795YuRd14dCe8dzTXIZ1NnwEwqUIEzF2oS8VeMThLxSIXmKlCBVwGIhT4+dASjo6OV86rAcYF5DXTJvpqAISKGeCpQgeMBwwGnC4iLjY2NkuA4NjZWOZPfMrwaedqJgBUj6uUsjlNhfBU4IRA/KCCPBn4UjlYhEDg2YTBHwi2eue/br8DvNrBq4Mknn0QqlRL8Xr16NZqamvCzn/1MMvMhCX1juPLKK0UQP/zww6iqqpJcgng8jte//vUYHh7GQw89hFwuJ39TaFNQ3HbbbfK8jo4OeY7hs7y3wm9/+2B42uHDh7Fnzx4R8BdeeKFfSrlv3z786le/wgc+8AH57Omnn5ZkTl7H+6gMLl26dMo6+Mznn38evb29yGazOOecc9DS0iJ4w9BVMBgUXOM4M2fOxMTEBB588EFcffXV8jzi46OPPurP7YILLpDn3nPPPfK8yy67DM3NzYKTd911F9761rf6SqkoKL9rh1iBlwZkQl/84hexZcsW3H///YJwt956K/r6+jBnziwsWjTvBf8G+nvQ0dEu45HZ8Z+xTugR+u53vytvxiN84QtfwODgoHzGsZjkZYB/8x+Rn2/mI9JD6qon5fPx8XF5Lj9Pp9P+tRWmWYGTARnvf/3Xfwm+HDhwAD/84Q/lDuJqT0+P1P8Tp4iPvJY42t7eLsKcigCBb4IcGBgQhmssbzLXxx9/HN///vdfU1bgaxF27NghQra2thYbN26UFfb394ugp3DeuXOnKGPEhWXLlokQ589jnasR6MSPrq4uEbr8jDhCZYC4Qxw6dOiQfH777bfja1/7Gj7xiU8Izv3mN78R4U98fPbZZ/HII49g165d2L9/v+AXlUdIjswQ7r77bjzzzDOCawYqmFaBUwIiHwXnZz7zGWFwRLBvfOMbcD0PkVAI0XD4Bf/q6+qkGoJC/6mnnhLEI9MksbDumUyQgpzPNsyPSM3v+R01VBIaGSvvI2GR+Pg8IjKvoUJAJsr7KdSPHDki13F+BvkrUIHjQWdnJ2688Ua0tbUJw37f+94nV9IKv/TSSwUfV65c6d9NRvvcc88JPhqGzvvIYGmJ/fznP5fvKQA++9nPYsOGDYL7tPYrgv3MBPIYnhl5C3kb4ctf/rII4c997nP49Kc/jXvvvVfOFFpZgzY0jgbyMlrM27fvwK9//Wv/Hp59d3e3jEMcMkALm4bSwoULxVI///zzcfbZZ2PBggWCk/T4EBdp3RO/qABQkeT1//7v/y5zocA33qQKhlXglICIQw32k5/8pGifc+bMwYc+9CHYgtyWfH/0PyJdwLYFEZcvXy7uprq6OvlXX18vn3/0ox+Va+laesc73iFaLMcxndGIzDU1NeJmWrx4MZYsWSKIzmdTA+azeC3vp4XO62bNmiXf8TkVqMDJ4LzzzhPBTfwy7lbiJF2ibM5jmCU/43XnnnuuWFrmczLg97///di2bZsI8E2bNsnnxEc+mwrpe9/73tMar6/AqcP8+fN9NzbPiobERz7yEVHk/uIv/kIEOl3d5vyM54/87Gig4CZeRKMR4UsUxCZUSS/Ptdde699BRYKK4KJFi8T7Q55KHFu/fr0YJHTX83nz5s3DH/3RHwl+velNb8ITTzwhz+Q/XvPNb34T3/rWt+SZkhQ30n9IrK8KVODFAnE1Gk2cIIZOd3klhl6BMxseeOABYawU1IT77rvPD/tQiJOhk0HTAqdCy++oTF5++eX+uugtIrO96KKL0Nra6n9ObxRjsTfccIPE5+k6ZbioAmcePPbYY2JozJ079wUx9E133okwhbplwXNdBGMxnLV+/QvWQIHP86XAp2udil0ikRDc4E/KWgrtGTNmYPPmzdi7d68IbeZbUKDT08hx6SGiMVOOXwwJXHLJJX5eBnTIh8oB8U4EenK0HyMZIBKaqkFyIqej17LjuMcVCK8k0EVyLK3q1TYGdAb3dLrwTteZGO31dLgjX0t4htOAAwaolIVC07+e6YDTdRYnA3bfzBeKaK4OikAnY38l+vNX4PTB+HPPwdX5O4RgIoHqhWdOh0OGIgXT6Uqor6tGTdgRDYHSntoDXRDUQgnUTBkPoCZBDYJaDIP/vI6/U4ule5TfmQxAah8rVqwQBGYWIbVfZoDye7o4jAujXHFgjIAuC8YZ6PKiNsxYKN2njHfxWs6JsQ4SKp/NedBdRuKltsMxOCeupZxwuC7O0SQp8Hree9111+GOO+4Qty2/N0KG93OOXNP27dvF3ct7mRjGudH1y3UbrZ7fcV4mC5axM44JnSlLVx3jHbyP93DuXBefb+IxjI9wHvyOLpbZs2eLe5rAa+mSNnvGfeIcmRxRXV0t7iJaEnfeeScuvvhif928ltdxjxnH4fo4B1oZPBeeKTVBzp/ncvSZGOD35QkYtGroMqKrSEomgkFxFdHNRNcStVTOq9z1ffQzTIKbWcuxxqMLk/tDDZXJKNxjfs6/r7rqKlkH95zjHO8ZR6/p6HmYz4gXxD26wGh9USOm0Fy7dq3czzHohj3RMwwOHG8e1NR5jky64U/SFemECTH8m3hCvGIzF+PWPd7eHWvfyq+lxUEc5FkwHkfNn/hEa4Dr4pnx7E/0DFqYpKPjrflEe8Hsb+IbxyQum/3ZvXu3JBfxHq6B/3784x/LZ6Qt1QWvSujA0PKpjHf0Z1w7eQg/J15yP8466yxZN9fPz5m9zLkRn8hb+Bl5DnGNNGwyn3k9cU11uwwK76ClxLlzfxlX59mZMzO8k5DJZrH3MHM6iv535dZXBc58aN6w4YyeI5PtfNXVcVXwni4haM2WhGh+kgBJiBSYROxVq1ZJEgEz8fg5hRxjDhRcZIYUEmxPySSA//7v/xZBQ8HFRCYSAZklCQW6nMMINDJUMg8+0wh1Crbq6hp5DgnHMAESGYmI8VkSJdP9GQ8h0+W8yLSocFx//fXybLMeaKZKYqeAW7NmjQjD73znOzJ3MlXuA9dK4iUD4By4ZjJ4umP4fCYwcH3/8i//4hOxGYNr/elPf4qOjk5kMkr5oCDgnpERDA8NY9/+fbI+MmbuG7/n2jmXH/3oR1h74VqZJ+dIdyATJa655hp/z4x1xuexjSZ7cvN5nAOzxbmXZDAUupw/hQYZEsfj+VCYk9n95Cc/kedQAfj85z//gjM5HnAtZLhU3Bi3JtMmU+RaGdOhcOd5fPjDHz7uM8qTRo4HnDvPlPvC+ZsEIwqab3/724JTnDvj+yeCU1kTlRTiF8+esVFm41PJYuYpNeCvfOUrJ7X4yvHsWMAz5Vw4f+IXlR66aMfGxnHfffdKgh/p7etf+/oxhWf53p3MQqciStwiLRHPTbLgf/zHfwiuUPEypTEnGudk+3Y84Dp4L/dwwYKF6O4+KPRP+v7nf/5noS2e6c033yxz3bhxk7SiNYogExz/9m//VvD/pQDPwuAYfxJXv/e972HhgoXCOxYvWYJ0OiX7Q5qn4ULa5e/8ybP++Mc/Ln/LOybq66XKg4ok+Q15AZVj0gLpinyIc+Zef/CDH/RnXKm4qMDpAHG5ZyaGkPGiqIsqDZdMmpaasbCOB2QOFH7Gn0/Bwb/L76HAI1M3Vs2xgIRTbokcDRRoJAgmOhHIZElo5eNwLvzbKCTHAjKO47m5qN2Q8VHQkUlyPMY/KKgMkKGTOVFJeClj8JkUotTMTYyNVgO9AOVWLPeMwttY4y92z2j5cZ60Oghjo2PMW5tiMTCTnAyuPBZzoucze9xcSwFKxma+pxJEpkbc4Xe0qCg06CmBvAY0K/dzPONhobfFjANtoR89DveL58LnmXFptfLsuW+cQ/n3hXwB3Ye6/TPgM8vPr3xNPFsKtGOtz9QkE58Y7+KzSAtmPfyOAp/Po0JEa5pJekb4luNA+XNlDf0DaGltecG4XCvXROAa+Sx+RmWGz+Ka+VzihfFsla+n/AygaaZ87eXj8mwSVQnkC3mfhih4zVvRKGyJOwb/+DfXOV1wMj7zcuB49FjudSiHU+E1B/YfQKI6cUJeczTQ5b6/dxTVoaLQA3nIa9lCNyV85HP8nWdAuiH9UxYQp0g3xvsIjc/EX15zInwjHyCu0oPDn+oVwKW9pHLGsyUfL/cyv9aBCvEUCz0eVwjOzS+30I8HtMZIjGQ63DiTLEKCILJTyFIDZ3LBwhPEGsjoT2SJkKhobZIB81lkVPyMDIxWGxGArjojLE40zvHWQ2WEwoGMjQydz6bwJWPj2ohsHHPdunXy3UsZw9SyUhhw34iQ9DJQUSDzpGDioVC7J2OhK/ul7BnnSeFALwKZN5UzPp9r5LlQiHBcWqDHm+vRz2eogNYH18C9qNEv6qBgptWjLMwx8WLQyuXfZILcT17Df3weryERmnGPLgXh/rCJAveGc6UVZbLieT6cN5kBn8+1MQzCuXG/yIQZyiAh8wz5s3x95WviPFjjSVwng+Ge8CfnyTVy/yjcqGiZ7HmeDddDa5Hjm3F4HffWMKdyHCBzoXVPZYDP5N5x/cQhjkflzShHZELG+jf0RGFvsqv5N9dpFJHy9VDx4D5wj0h/RmBx3mY9JgzAz40rm7jCe4hzfJaJOZfj38ux0E8FDL+ZDjje3Ln3x/r8VHlNLp97UYLC/R2z0EkrxGvSsgmzEn/J+7iX3FPSMnGRuM/95j3kU8Rf/iONEQ/5kyFVyhnSD+UOw0e8nrhNj9eb3/xmn7+RH1Hu0Gjh9+QJHJ+84rUOvoU+kQ9gRtPUuJ+JOR8PaAlyA8lsTAckHojJ6iNT4e882BNZ6CdLXKE1RavFvLmJ8yIT4OFyPDInIgX/NlbUsYDzPJ7VS6ZmND4KWzJrIgGZHAWTERD8eTyrFicZA1oJIkKbODDXzrWYRBkyZq6T6z3Rc060Z+Zc+ByjFZvuRhTERlhwnSb+f7Lnm2dCW1ScG/fbxBNNFywTx+RnBg+4p2YtFND8zng5DFM1Y5FpklHyb+IPf/IaY7GaPTNtG01iGPewfBwKaF5XbqWWr4k4RVzh3xS6ZC5cg1EwiE9kBiaPwpTk8Tp+Z8ahMsZ50rNjhGs5DlBBoVJg4q+839CLvEY4EhFc4F5yr8z4hu6MdUmrhPOkkDUWevl6OA/SGT/jvvM+845zPpvPI+5yDrzOWK5m3cZaJaPlPyo2Zg3EzRPR75kMJ6PHo+GV4jUvAMtCd//E74yFzj4RzEFgbTXxn3jJfTN8wfALhgEZ8mO5H2mfBhTDM1SaqLCb7mk0pBji4N6RHzOUyDF4vsbDY2iZ52fogbhMmqFicMUVV5wBOzN9QAXHF+ijWaCzYaqbY2BwFPFjuKVeSSjkCrDgIvgiiO6lQDaTRzRio+hYCIampx60mC/Iqywj05y9ms8WYNsegtNYgZDP5mAHAghOc3ZzIaeT4iLTW01RLBThOg7C0enFM56NBQehaRaAuWwBRGP7BKGqV2qcRDyAyVQR0dj0V7y8ksAzd4qFaafHkwF5T2tzLQ4NTv7OCHQKY+PlofJDxZZrpmJqLHYKeV5HIU5vCPMRaFVTAeBPKpXGKKGVTmXLKJ80LngvlX8aY8ZLRmFO44Pj0kNcbtjw+a9lmCLQh1MuNt57m2hEdCuysD6ZymH+/OO7fV8JGBgcweT4BO
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.