Advances in preconcentration/removal of environmentally relevant heavy metal ions from water and wastewater by sorbents based on polyurethane foamAbstract: An increased interest in the removal of heavy metal ions from aqueous media is encountered due to their toxicity and negative impacts on ecosystems, human health and economic activities. A variety of processes may be used for the removal of heavy metal ions from water and wastewater, such as chemical precipitation, ion exchange, adsorption, membrane processes, etc. However, the removal efficiencies of heavy metals by adsorption depend on several factors such as initial loads of heavy metals in the influent, purpose of treatment (drinking/industrial water production, wastewater treatment for disposal or recycling), costs of the overall process, and properties and conditions for regeneration of the sorbent materials. In this context, the use of polyurethane foams as heavy metal ion sorbents is of a special interest because they provide versatile applications in heavy metal effluent management. This study reviews relevant published researches that are concerned with new sorbents based on polyurethane foams applied in batch and dynamic systems for separation and/or preconcentration of heavy metal ions in environmental aqueous media. This review is divided into the following sections: synthesis of polyurethane foams; physical and chemical properties of polyurethane foams; preconcentration of pollutant metal ions from environmental aqueous media by different types of polyurethane foam (untreated, loaded, reacted and composite polyurethane foams); the applicability of sorbents based on polyurethane foams for water and wastewater treatment; comparison of sorbents based on polyurethane foam with other sorbents for heavy metal ion removal.
Within the frame of this work, the synthesis of silver nanoparticles (Ag NPs) and silver chloride nanoparticles (AgCl NPs) as mediated by microbes has been investigated. The nanoparticles were reduced from a silver nitrate precursor by the presence of bacteria, like Raoultella planticola and Pantoea agglomerans. The results show that the characteristic surface plasmon resonance absorption band occurs at about 440 nm. Nanoparticles were also characterized with the help of scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), transmission electron microscopy (TEM), and X-ray diffraction (XRD), which showed the formation of spherical Ag/AgCl NPs with a centered cubic crystal structure and a mean particle size of around 10–50 nm. Assays for antimicrobial activity of the biosynthesized nanoparticles demonstrated meaningful results against microorganisms such as Staphylococcus aureus, Streptococcus pyogenes, Salmonella, and Bacillus amyloliquefaciens. Furthermore, this study shows that the combination of the obtained nanoparticles with standard antibiotics may be useful in the fight against emerging microbial drug resistance.
A special attention is currently focused on the recovery of Au, Ag, Pt, Pd and Rh from both primary and secondary sources. From the wide range of sorbents that have been used in this respect, the required selectivity is proved only by the chelating polymers containing donor N, O and S atoms in their functional groups. This work presents the recent published researches on this topic, pointing out the capabilities of chelating sorbents based on organic synthetic polymers for a sustainable development. The chelating sorbents are differentiated and reviewed according to their synthesis strategy and compatibility with synthetic and real matrices. First, an overview on the novel functionalized polymers and impregnated resins with good selectivity for the recovery of most valuable precious metals from synthetic leach solutions is given. Subsequently, the performances of these materials in the selective and preconcentrative recovery of Au, Ag, Pt, Pd and Rh from simulated and real leachates are discussed. The viability of an integrated approach for the determination of precious metals from simulated solutions by solid phase spectrometry is highlighted. The transposition of chelating polymers’ potential in challenging technologies for precious metal recovery-reuse-recycling needs further research on directions that are proposed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.