Lateral prefrontal and posterior parietal cortical areas exhibit task-dependent activation during working memory tasks in humans and monkeys. Neurons in these regions become synchronized during attention demanding tasks, but the contribution of these interactions to working memory is largely unknown. Using simultaneous recordings of neural activity from multiple areas in both regions, we find widespread, task-dependent and content specific synchronization of activity across the fronto-parietal network during visual working memory. The patterns of synchronization are prevalent among stimulus selective neurons and are governed by influences arising in parietal cortex. These results indicate that short-term memories are represented by large-scale patterns of synchronized activity across the fronto-parietal network.
Studies on processing in primary visual areas often use artificial stimuli such as bars or gratings. As a result, little is known about the properties of activity patterns for the natural stimuli processed by the visual system on a daily basis. Furthermore, in the cat, a well-studied model system for visual processing, most results are obtained from anesthetized subjects and little is known about neuronal activations in the alert animal. Addressing these issues, we measure local field potentials (lfp) and multiunit spikes in the primary visual cortex of awake cats. We compare changes in the lfp power spectra and multiunit firing rates for natural movies, movies with modified spatio-temporal correlations as well as gratings. The activity patterns elicited by drifting gratings are qualitatively and quantitatively different from those elicited by natural stimuli and this difference arises from both spatial as well as temporal properties of the stimuli. Furthermore, both local field potentials and multiunit firing rates are most sensitive to the second-order statistics of the stimuli and not to their higher-order properties. Finally, responses to natural movies show a large variability over time because of activity fluctuations induced by rapid stimulus motion. We show that these fluctuations are not dependent on the detailed spatial properties of the stimuli but depend on their temporal jitter. These fluctuations are important characteristics of visual activity under natural conditions and impose limitations on the readout of possible differences in mean activity levels.
Working memory requires large-scale cooperation among widespread cortical and subcortical brain regions. Importantly, these processes must achieve an appropriate balance between functional integration and segregation, which are thought to be mediated by task-dependent spatiotemporal patterns of correlated activity. Here, we used cross-correlation analysis to estimate the incidence, magnitude, and relative phase angle of temporally correlated activity from simultaneous local field potential recordings in a network of prefrontal and posterior parietal cortical areas in monkeys performing an oculomotor, delayed match-to-sample task. We found longrange intraparietal and frontoparietal correlations that display a bimodal distribution of relative phase values, centered near 0°and 180°, suggesting a possible basis for functional segregation among distributed networks. Both short-and long-range correlations display striking task-dependent transitions in strength and relative phase, indicating that cognitive events are accompanied by robust changes in the pattern of temporal coordination across the frontoparietal network.
In various mental disorders, dysfunction of the prefrontal cortex contributes to cognitive deficits. Here we studied how the claustrum (CLA), a nucleus sharing reciprocal connections with the cortex, may participate in these cognitive impairments. We show that specific ensembles of CLA and of medial prefrontal cortex (mPFC) neurons are activated during a task requiring cognitive control such as attentional set-shifting, i.e. the ability to shift attention towards newly relevant stimulus-reward associations while disengaging from irrelevant ones. CLA neurons exert a direct excitatory input on mPFC pyramidal cells, and chemogenetic inhibition of CLA neurons suppresses the formation of specific mPFC assemblies during attentional set-shifting. Furthermore, impairing the recruitment of specific CLA assemblies through opto/chemogenetic manipulations prevents attentional set-shifting. In conclusion, we propose that the CLA controls the reorganization of mPFC ensembles to enable attentional set-shifting, emphasizing a potential role of the CLA-mPFC network in attentional dysfunctions.
Schizophrenia is a severely debilitating neurodevelopmental disorder. Establishing a causal link between circuit dysfunction and particular behavioral traits that are relevant to schizophrenia is crucial to shed new light on the mechanisms underlying the pathology. We studied an animal model of the human 22q11 deletion syndrome, the mutation that represents the highest genetic risk of developing schizophrenia. We observed a desynchronization of hippocampal neuronal assemblies that resulted from parvalbumin interneuron hypoexcitability. Rescuing parvalbumin interneuron excitability with pharmacological or chemogenetic approaches was sufficient to restore wild-type-like CA1 network dynamics and hippocampal-dependent behavior during adulthood. In conclusion, our data provide insights into the network dysfunction underlying schizophrenia and highlight the use of reverse engineering to restore physiological and behavioral phenotypes in an animal model of neurodevelopmental disorder.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.