The new evolution of the production and industrial process called Industry 4.0, and its related technologies such as the Internet of Things, big data analytics, and cyber–physical systems, among others, still have an unknown potential impact on sustainability and the environment. In this paper, we conduct a literature-based analysis to discuss the sustainability impact and challenges of Industry 4.0 from four different scenarios: deployment, operation and technologies, integration and compliance with the sustainable development goals, and long-run scenarios. From these scenarios, our analysis resulted in positive or negative impacts related to the basic production inputs and outputs flows: raw material, energy and information consumption and product and waste disposal. As the main results, we identified both positive and negative expected impacts, with some predominance of positives that can be considered positive secondary effects derived from Industry 4.0 activities. However, only through integrating Industry 4.0 with the sustainable development goals in an eco-innovation platform, can it really ensure environmental performance. It is expected that this work can contribute to helping stakeholders, practitioners and governments to advance solutions to deal with the outcomes emerging through the massive adoption of those technologies, as well as supporting the expected positive impacts through policies and financial initiatives.
Dental caries is considered a disease of high prevalence and a constant problem in public health. Proanthocyanidins (PAs) are substances that have been the target of recent studies aiming to control or treat caries. Objective The aim of this in vitro study was to evaluate the efficacy of a treatment with grape seed extract, under cariogenic challenge, to minimize or even prevent the onset of caries in the enamel and dentin.Material and Methods Blocks of enamel and dentin (6.0x6.0 mm) were obtained from bovine central incisors, polished, and selected by analysis of surface microhardness (SH). The blocks were randomly divided into 3 groups (n=15), according to the following treatments: GC (control), GSE (grape seed extract), GF (fluoride – 1,000 ppm). The blocks were subjected to 6 daily pH cycles for 8 days. Within the daily cycling, the specimens were stored in buffered solution. The blocks were then analyzed for perpendicular and surface hardness and polarized light microscopy.Results The means were subjected to statistical analysis using the ANOVA and Fisher’s PLSD tests (p<0.05). For enamel SH, GF showed the highest hardness values. In the dentin, GF was also the one that showed higher hardness values, followed by GSE. Regarding the cross-sectional hardness values, all groups behaved similarly in both the enamel and dentin. The samples that were treated with GSE and fluoride (GF) showed statistically higher values than the control.Conclusion Based on the data obtained in this in vitro study, it is suggested that grape seed extract inhibits demineralization of artificial carious lesions in both the enamel and dentin, but in a different scale in each structure and in a smaller scale when compared to fluoride.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.