Many plant species of great economic value (e.g., potato, wheat, cotton, and sugarcane) are polyploids. Despite the essential roles of autopolyploid plants in human activities, our genetic understanding of these species is still poor. Recent progress in instrumentation and biochemical manipulation has led to the accumulation of an incredible amount of genomic data. In this study, we demonstrate for the first time a successful genetic analysis in a highly polyploid genome (sugarcane) by the quantitative analysis of single-nucleotide polymorphism (SNP) allelic dosage and the application of a new data analysis framework. This study provides a better understanding of autopolyploid genomic structure and is a sound basis for genetic studies. The proposed methods can be employed to analyse the genome of any autopolyploid and will permit the future development of high-quality genetic maps to assist in the assembly of reference genome sequences for polyploid species.
Low soil phosphorus (P) availability is a major constraint for crop production in tropical regions. The rice (Oryza sativa) protein kinase, PHOSPHORUS-STARVATION TOLERANCE1 (OsPSTOL1), was previously shown to enhance P acquisition and grain yield in rice under P deficiency. We investigated the role of homologs of OsPSTOL1 in sorghum (Sorghum bicolor) performance under low P. Association mapping was undertaken in two sorghum association panels phenotyped for P uptake, root system morphology and architecture in hydroponics and grain yield and biomass accumulation under low-P conditions, in Brazil and/or in Mali. Root length and root surface area were positively correlated with grain yield under low P in the soil, emphasizing the importance of P acquisition efficiency in sorghum adaptation to low-P availability. SbPSTOL1 alleles reducing root diameter were associated with enhanced P uptake under low P in hydroponics, whereas Sb03g006765 and Sb03g0031680 alleles increasing root surface area also increased grain yield in a low-P soil. SbPSTOL1 genes colocalized with quantitative trait loci for traits underlying root morphology and dry weight accumulation under low P via linkage mapping. Consistent allelic effects for enhanced sorghum performance under low P between association panels, including enhanced grain yield under low P in the soil in Brazil, point toward a relatively stable role for Sb03g006765 across genetic backgrounds and environmental conditions. This study indicates that multiple SbPSTOL1 genes have a more general role in the root system, not only enhancing root morphology traits but also changing root system architecture, which leads to grain yield gain under low-P availability in the soil.
The rubber tree (Hevea spp.), cultivated in equatorial and tropical countries, is the primary plant used in natural rubber production. Due to genetic and physiological constraints, inbred lines of this species are not available. Therefore, alternative approaches are required for the characterization of this species, such as the genetic mapping of full-sib crosses derived from outbred parents. In the present study, an integrated genetic map was obtained for a full-sib cross family with simple sequence repeats (SSRs) and expressed sequence tag (EST-SSR) markers, which can display different segregation patterns. To study the genetic architecture of the traits related to growth in two different conditions (winter and summer), quantitative trait loci (QTL) mapping was also performed using the integrated map. Traits evaluated were height and girth growth, and the statistical model was based in an extension of composite interval mapping. The obtained molecular genetic map has 284 markers distributed among 23 linkage groups with a total length of 2688.8 cM. A total of 18 QTLs for growth traits during the summer and winter seasons were detected. A comparison between the different seasons was also conducted. For height, QTLs detected during the summer season were different from the ones detected during winter season. This type of difference was also observed for girth. Integrated maps are important for genetics studies in outbred species because they represent more accurately the polymorphisms observed in the genitors. QTL mapping revealed several interesting findings, such as a dominance effect and unique segregation patterns that each QTL could exhibit, which were independent of the flanking markers. The QTLs identified in this study, especially those related to phenotypic variation associated with winter could help studies of marker-assisted selection that are particularly important when the objective of a breeding program is to obtain phenotypes that are adapted to sub-optimal regions.
Sugarcane-breeding programs take at least 12 years to develop new commercial cultivars. Molecular markers offer a possibility to study the genetic architecture of quantitative traits in sugarcane, and they may be used in marker-assisted selection to speed up artificial selection. Although the performance of sugarcane progenies in breeding programs are commonly evaluated across a range of locations and harvest years, many of the QTL detection methods ignore two- and three-way interactions between QTL, harvest, and location. In this work, a strategy for QTL detection in multi-harvest-location trial data, based on interval mapping and mixed models, is proposed and applied to map QTL effects on a segregating progeny from a biparental cross of pre-commercial Brazilian cultivars, evaluated at two locations and three consecutive harvest years for cane yield (tonnes per hectare), sugar yield (tonnes per hectare), fiber percent, and sucrose content. In the mixed model, we have included appropriate (co)variance structures for modeling heterogeneity and correlation of genetic effects and non-genetic residual effects. Forty-six QTLs were found: 13 QTLs for cane yield, 14 for sugar yield, 11 for fiber percent, and 8 for sucrose content. In addition, QTL by harvest, QTL by location, and QTL by harvest by location interaction effects were significant for all evaluated traits (30 QTLs showed some interaction, and 16 none). Our results contribute to a better understanding of the genetic architecture of complex traits related to biomass production and sucrose content in sugarcane.Electronic supplementary materialThe online version of this article (doi:10.1007/s00122-011-1748-8) contains supplementary material, which is available to authorized users.
BackgroundSugarcane (Saccharum spp.) is predominantly an autopolyploid plant with a variable ploidy level, frequent aneuploidy and a large genome that hampers investigation of its organization. Genetic architecture studies are important for identifying genomic regions associated with traits of interest. However, due to the genetic complexity of sugarcane, the practical applications of genomic tools have been notably delayed in this crop, in contrast to other crops that have already advanced to marker-assisted selection (MAS) and genomic selection. High-throughput next-generation sequencing (NGS) technologies have opened new opportunities for discovering molecular markers, especially single nucleotide polymorphisms (SNPs) and insertion-deletion (indels), at the genome-wide level. The objectives of this study were to (i) establish a pipeline for identifying variants from genotyping-by-sequencing (GBS) data in sugarcane, (ii) construct an integrated genetic map with GBS-based markers plus target region amplification polymorphisms and microsatellites, (iii) detect QTLs related to yield component traits, and (iv) perform annotation of the sequences that originated the associated markers with mapped QTLs to search putative candidate genes.ResultsWe used four pseudo-references to align the GBS reads. Depending on the reference, from 3,433 to 15,906 high-quality markers were discovered, and half of them segregated as single-dose markers (SDMs) on average. In addition to 7,049 non-redundant SDMs from GBS, 629 gel-based markers were used in a subsequent linkage analysis. Of 7,678 SDMs, 993 were mapped. These markers were distributed throughout 223 linkage groups, which were clustered in 18 homo(eo)logous groups (HGs), with a cumulative map length of 3,682.04 cM and an average marker density of 3.70 cM. We performed QTL mapping of four traits and found seven QTLs. Our results suggest the presence of a stable QTL across locations. Furthermore, QTLs to soluble solid content (BRIX) and fiber content (FIB) traits had markers linked to putative candidate genes.ConclusionsThis study is the first to report the use of GBS for large-scale variant discovery and genotyping of a mapping population in sugarcane, providing several insights regarding the use of NGS data in a polyploid, non-model species. The use of GBS generated a large number of markers and still enabled ploidy and allelic dosage estimation. Moreover, we were able to identify seven QTLs, two of which had great potential for validation and future use for molecular breeding in sugarcane.Electronic supplementary materialThe online version of this article (doi:10.1186/s12864-016-3383-x) contains supplementary material, which is available to authorized users.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.