This study aimed to evaluate the effects of 5 days of 810-nm low-level laser therapy (LLLT) intervention on inflammatory and muscle damage markers and performance in young water polo players. Twenty young male water polo players participated in the study, which was designed as a randomized, double-blinded, placebo-controlled trial. Active LLLT or an identical placebo LLLT were delivered to eight points on the adductor muscle region immediately after each training day. Performance was measured by a 200-m maximal swimming (P200) and a 30-s crossbar jump test (30CJ) which was performed every day before training, and blood samples were drawn pre and post the final LLLT intervention to measure interleukins (IL) and muscle damage markers. There was no significant change in the P200 exercise in the LLLT group compared with the placebo group but there was a moderate improvement in the 30CJ (8.7 ± 2.6 %). IL-1β and tumor necrosis factor-alpha presented increased (P < 0.016) concentration within group 48 h after the last LLLT intervention compared to pre, 0, and 24 h, but did not differ between groups. IL-10 increased over time in the placebo group and reached a moderate effect compared to the LLLT group. The creatine kinase decreased significantly (P = 0.049) over the time within the LLLT treatment group, but there was no significant change in lactate dehydrogenase (P = 0.150). In conclusion, LLLT resulted in a non-significant, but small to moderate effect on inflammatory and muscle damage markers and a moderate effect on performance in water polo players. In addition, the lack of positive results could be due to the small area covered by irradiation and this should be considered in future studies.
Infra-red LLLT (830 nm) applied after inguinal-hernia surgery was effective in preventing the formation of keloids. In addition, LLLT resulted in better scar appearance and quality 6 mo postsurgery.
Muscle injuries represent ca 30% of sports injuries and excessive stretching of muscle causes more than 90% of injuries. Currently the most used treatments are nonsteroidal anti-inflammatory drugs (NSAIDs), however, in last years, low-level laser therapy (LLLT) is becoming an interesting therapeutic modality. The aim of this study was to evaluate the effect of single and combined therapies (LLLT, topical application of diclofenac and intramuscular diclofenac) on functional and biochemical aspects in an experimental model of controlled muscle strain in rats. Muscle strain was induced by overloading tibialis anterior muscle of rats. Injured groups received either no treatment, or a single treatment with topical or intramuscular diclofenac (TD and ID), or LLLT (3 J, 810 nm, 100 mW) 1 h after injury. Walking track analysis was the functional outcome and biochemical analyses included mRNA expression of COX-1 and COX-2 and blood levels of prostaglandin E2 (PGE2 ). All treatments significantly decreased COX-1 and COX-2 gene expression compared with injury group (P < 0.05). However, LLLT showed better effects than TD and ID regarding PGE2 levels and walking track analysis (P < 0.05). We can conclude that LLLT has more efficacy than topical and intramuscular diclofenac in treatment of muscle strain injury in acute stage.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.