Background: Diabetic patients are susceptible to developing foot ulcers with serious complications such as osteomyelitis and amputations. Treatment approaches are still empirical and the benefit of usual procedures such as surgical debridement has not been properly evaluated. Photodynamic Therapy (PDT) is a non-invasive and highly efficient method for the treatment of the diabetic foot, being able to eradicate the infection and to stimulate healing, decreasing considerably the amputation risk. In the day-to-day practice of our service, we have been faced with the question whether debridement is necessary before PDT. In here, we designed a study to answer that question. Methods: Patients were divided in two groups: In one of the groups (n = 17), debridement was performed before PDT and in the other (n = 40) only PDT treatment was performed. PDT sessions were performed once a week in all patients until healing was achieved, as indicated by visual inspection as well as by radiographic and laboratory exams. At the start of the study, the two groups had no statistical differences concerning their clinical features: average age, gender, insulin use, diabetes mellitus onset time and previous amputations. Results: PDT was effective in the treatment of 100% of the patients showing no relapses after one year of follow up. The group submitted to PDT without previous debridement had a statistically significant (p = 0.036, Mann-Whitney) shorter cure time (29 days, ~27%). Conclusion: Our data indicates that debridement is not necessary in the treatment of diabetic foot in patients that have enough peripheral arterial perfusion. In addition, we reproduced previous studies confirming that PDT is an efficient, safe, simple and affordable treatment method for the diabetic foot.
The proteoglycan syndecan-1 and the endoglucuronidases heparanase-1 and heparanase-2 are involved in molecular pathways that deregulate cell adhesion during carcinogenesis. Few studies have examined the expression of syndecan-1, heparanase-1 and mainly heparanase-2 proteins in non-neoplastic and neoplastic human colorectal adenoma tissues. The aim of this study was to analyze the correlation among the heparanase isoforms and the syndecan-1 proteins through immunohistochemical expression in the tissue of colorectal adenomas. Primary antihuman polyclonal anti-HPSE and anti-HPSE2 antibodies and primary anti-human monoclonal anti-SDC1 antibody were used in the immunohistochemical study. The expressions of heparanase-1 and heparanase-2 proteins were determined in tissue samples from 65 colorectal adenomas; the expression of syndecan-1 protein was obtained from 39 (60%) patients. The histological type of adenoma was tubular in 44 (67.7%) patients and tubular-villous in 21 (32.3%); there were no villous adenomas. The polyps were <1.0 cm in size in 54 (83.1%) patients and ≥1.0 cm in 11 (16.9%). The images were quantified by digital counter with a computer program for this purpose. The expression index represented the relationship between the intensity expression and the percentage of positively stained cells. The results showed that the average of heparanase-1, heparanase-2 and syndecan-1 expression index was 73.29 o.u./µm², 93.34 o.u./µm², and 55.29 o.u./µm², respectively. The correlation between the heparanase-1 and syndecan-1 expression index was positive (R=0.034) and significant (P=0.035). There was a negative (R= -0.384) and significant (P=0.016) correlation between the expression index of heparanase-1 and heparanase-2. A negative (R= -0.421) and significant (P=0.008) correlation between the expression index of heparanase-2 and syndecan-1 was found. We concluded that in colorectal adenomas, the heparanase-1 does not participate in syndecan-1 degradation; the heparanase-2 does not stimulate syndecan-1 degradation by the action of heparanase-1, and the heparanase-2 may be involved in the modulation of the heparanase-1 activity.
BackgroundHeparanase is an enzyme that cleaves heparan sulfate chains. Oligosaccharides generated by heparanase induce tumor progression. Basal cell carcinoma and squamous cell carcinoma comprise types of nonmelanoma skin cancer.ObjectivesEvaluate the glycosaminoglycans profile and expression of heparanase in two human cell lines established in culture, immortalized skin keratinocyte (HaCaT) and squamous cell carcinoma (A431) and also investigate the expression of heparanase in basal cell carcinoma, squamous cell carcinoma and eyelid skin of individuals not affected by the disease (control).MethodsGlycosaminoglycans were quantified by electrophoresis and indirect ELISA method. The heparanase expression was analyzed by quantitative RT-PCR (qRTPCR).ResultsThe A431 strain showed significant increase in the sulfated glycosaminoglycans, increased heparanase expression and decreased hyaluronic acid, comparing to the HaCaT lineage. The mRNA expression of heparanase was significantly higher in Basal cell carcinoma and squamous cell carcinoma compared with control skin samples. It was also observed increased heparanase expression in squamous cell carcinoma compared to the Basal cell carcinoma.ConclusionThe glycosaminoglycans profile, as well as heparanase expression are different between HaCaT and A431 cell lines. The increased expression of heparanase in Basal cell carcinoma and squamous cell carcinoma suggests that this enzyme could be a marker for the diagnosis of such types of non-melanoma cancers, and may be useful as a target molecule for future alternative treatment.
The process of proliferation and invasion of tumor cells depends on changes in the extracellular matrix (ECM) through the activation of enzymes and alterations in the profile of ECM components. We aimed to investigate the mRNA and protein expression of ECM components such as heparanase (HPSE), heparanase-2 (HPSE2), matrix metalloproteinase-9 (MMP-9), and syndecan-1 (SYND1) in neoplastic and non-neoplastic tissues of patients with colorectal carcinoma (CRC). It is a cross-sectional study in which twenty-four adult patients that had CRC were submitted to resection surgery. We analyzed the expression of HPSE, HPSE2, MMP-9, and SYND1 by quantitative RT-PCR and immunohistochemistry. Differing from most of the studies that compare the mRNA expression between tumor samples and non-neoplastic tissues, we decided to investigate whether variations exist in the expression of the ECM components between the affected tissue and nontumoral tissue collected from the same patient with CRC. We removed both tissue samples immediately after the surgical resection of CRC. The data showed higher mRNA and protein expression of HPSE2 (P = 0.0058), MMP-9 (P = 0.0268), and SYND1 (P = 0.0002) in tumor samples compared to the non-neoplastic tissues, while there was only an increase in the level of HPSE protein in tumor tissues. A greater expression of HPSE2 was observed in patients with lymph node metastasis (P = 0.048), suggesting that such protein can be a marker of lymph node metastasis in CRC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.