Enterococcus faecalis is a commensal and nosocomial pathogen, which is also ubiquitous in animals and insects, representing a classical generalist microorganism. Here, we study E. faecalis isolates ranging from the pre-antibiotic era in 1936 up to 2018, covering a large set of host species including wild birds, mammals, healthy humans, and hospitalised patients. We sequence the bacterial genomes using short- and long-read techniques, and identify multiple extant hospital-associated lineages, with last common ancestors dating back as far as the 19th century. We find a population cohesively connected through homologous recombination, a metabolic flexibility despite a small genome size, and a stable large core genome. Our findings indicate that the apparent hospital adaptations found in hospital-associated E. faecalis lineages likely predate the “modern hospital” era, suggesting selection in another niche, and underlining the generalist nature of this nosocomial pathogen.
The yield of 24 commercial varieties and accessions of common bean (Phaseolus vulgaris) has been determined at different sites in Chile and Bolivia. Statistical analysis was performed in order to characterize whether a particular variety was more or less stable in yield under different environmental conditions. Amongst these, two varieties have been identified for more detailed study: one variety has a higher than average yield under unstressed conditions but is strongly affected by stress, and another has a reduced yield under unstressed conditions but is less affected by stress. The contrasting rate of abscission of the reproductive organs under drought stress was clearly consistent with these differences. The more tolerant genotype shows a great deal of plasticity at the biochemical and cellular level when exposed to drought stress, in terms of stomatal conductance, photosynthetic rate, abscisic acid synthesis, and resistance to photoinhibition. By contrast, the former lacks such plasticity, but shows an enhanced tendency for a morphological response, the movement of leaves, which appears to be its principal response to drought stress.
Lasiodiplodia theobromae is a phytopathogenic fungus that causes diseases not only in a broad number of plant hosts but also occasionally in humans. The capacity of L. theobromae to produce bioactive metabolites at 25 C (environmental mean temperature) and at 37 C (body mean temperature) was investigated. Two strains, CAA019 and CBS339.90, isolated respectively from a coconut tree and a human patient were characterized. The phytotoxicity and cytotoxicity (on mammalian cells) of the secretomes of both strains of L. theobromae were investigated. Also, phytotoxicity and cytotoxicity of pure compounds were evaluated. The phytotoxicity of the secretome of strain CAA019 was higher than the phytotoxicity of the secretome of strain CBS339.90 at 25 C. However, the phytotoxicity for both strains decreased when they were grown at 37 C. Only the secretome of strain CBS339.90 grown at 37 C induced up to 90% Vero and 3T3 cell mortality. This supports the presence of different metabolites in the secretome of strains CAA019 and CBS339.90. Metabolites typical of L. theobromae were isolated and identified from organic extracts of the secretome of both strains (e.g., 3-indolecarboxylic acid, jasmonic acid, lasiodiplodin, four substituted 2-dihydrofuranones, two melleins, and cyclo-(Trp-Ala)). Also, metabolites such as scytalone, not previously reported for this species, were isolated and identified. Metabolite production is affected by strain and temperature. In fact, some metabolites are strain specific (e.g., lasiodiplodin) and some metabolites are temperature specific (e.g., jasmonic acid). Although more strains should be characterized, it may be anticipated that temperature tuning of secondary-metabolite production emerges as a putative contributing factor in the modulation of L. theobromae pathogenicity towards plants, and also towards mammalian cells.
Lasiodiplodia theobromae (Botryosphaeriaceae, Ascomycota) is a plant pathogen and human opportunist whose pathogenicity is modulated by temperature. The molecular effects of temperature on L. theobromae are mostly unknown, so we used a multi-omics approach to understand how temperature affects the molecular mechanisms of pathogenicity. The genome of L. theobromae LA-SOL3 was sequenced (Illumina MiSeq) and annotated. Furthermore, the transcriptome (Illumina TruSeq) and proteome (Orbitrap LC-MS/MS) of LA-SOL3 grown at 25 °C and 37 °C were analysed. Proteins related to pathogenicity (plant cell wall degradation, toxin synthesis, mitogen-activated kinases pathway and proteins involved in the velvet complex) were more abundant when the fungus grew at 25 °C. At 37 °C, proteins related to pathogenicity were less abundant than at 25 °C, while proteins related to cell wall organisation were more abundant. On the other hand, virulence factors involved in human pathogenesis, such as the SSD1 virulence protein, were expressed only at 37 °C. Taken together, our results showed that this species presents a typical phytopathogenic molecular profile that is compatible with a hemibiotrophic lifestyle. We showed that L. theobromae is equipped with the pathogenesis toolbox that enables it to infect not only plants but also animals.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.