This paper reports on the IES‐UPM experience from 2006 to 2010 in the field of the characterization of PV arrays of commercial large PV plants installed in Spain within the framework of the profitable economic scenarios associated to feed‐in tariff laws. This experience has extended to 200 MW and has provided valuable lessons to minimize uncertainty, which plays a key role in quality assurance procedures. The paper deals not only with classic I–V measurements but also with watt‐metering‐based procedures. Particular attention is paid to the selection of irradiance and cell temperature sensors. Copyright © 2011 John Wiley & Sons, Ltd.
The effect of soiling in flat PV modules has been already studied, causing a reduction of the electrical output of 4% on average. For CPV's, as far as soiling produces light scattering at the optical collector surface, the scattered rays should be definitively lost because they cannot be focused onto the receivers again. While the theoretical study becomes difficult because soiling is variable at different sites, it becomes easier to begin the monitoring of the real field performance of concentrators and then raise the following question: how much does the soiling affect to PV concentrators in comparison with flat panels?' The answers allow to predict the PV concentrator electrical performance and to establish a pattern of cleaning frequency. Some experiments have been conducted at the IES-UPM and CSES-ANU sites, consisting in linear reflective concentration systems, a point focus refractive concentrator and a flat module. All the systems have been measured when soiled and then after cleaning, achieving different increases of 7 S c-I n general, results show that CPV systems are more sensitive to soiling than flat panels, accumulating losses in 7 S c of about 14% on average in three different tests conducted at IES-UPM and CSES-ANU test sites in Madrid (Spain) and Canberra (Australia). Some concentrators can reach losses up to 26% when the system is soiled for 4 months of exposure.
This paper presents the impact of non-homogeneous deposits of dust on the performance of a PV array. The observations have been made in a 2-MW PV park in the southeast region of Spain. The results are that inhomogeneous dust leads to more significant consequences than the mere short-circuit current reduction resulting from transmittance losses. In particular, when the affected PV modules are part of a string together with other cleaned (or less dusty) ones, operation voltage losses arise. These voltage losses can be several times larger than the short-circuit ones, leading to power losses that can be much larger than what measurements suggest when the PV modules are considered separately. Significant hot-spot phenomena can also arise leading to cells exhibiting temperature differences of more than 20 degrees and thus representing a threat to the PV modules' lifetime.
The hot-spot phenomenon is a relatively frequent problem occurring in current photovoltaic generators. It entails both a risk for the photovoltaic module's lifetime and a decrease in its operational efficiency. Nevertheless, there is still a lack of widely accepted procedures for dealing with them in practice. This paper presents the IES-UPM observations on 200 affected photovoltaic modules. Visual and infrared inspection, as well as electroluminescence, peak power rating and operating voltage tests have been carried out. Thermography under steady state conditions and photovoltaic module operating voltage, both at normal photovoltaic system operating conditions, are the selected methods to deal in practice with hot-spots. The temperature difference between the hot-spot and its surroundings, and the operating voltage differences between affected and non-affected photovoltaic modules are the base for establishing defective criteria, at the lights of both lifetime and operating efficiency considerations. Hot-spots temperature gradients larger than 20°C, in any case, and larger than 10°C when, at the same time, voltage operating losses are larger than the allowable power losses fixed at the photovoltaic module warranties, are proposed as rejecting conditions for routine inspections under contractual frameworks. The upper threshold of 20°C is deduced for temperate climates from the basic criterion of keeping absolute hot-spot temperatures below 20°C.
The degradation observed on a 7-kWp Si-x photovoltaic array after 17 years of exposure on the roof of the Solar Energy Institute of the Polytechnic University of Madrid is presented. The mean peak power degradation has been 9% over this time, or an equivalent to 0.53% per year, whereas peak power standard deviation has remained constant. The main visual defects are backsheet delamination at the polyester/polyvinyl fluoride outer interface and cracks in the terminal boxes and at the joint between the frame and the laminate. Insulation resistance complies well with the requirements of the International Electrotechnical Commission 61215 tests.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.