Global climate change models predict reduced cloud water in tropical montane forests. To test the effects of reduced cloud water on epiphytes, plants that are tightly coupled to atmospheric inputs, we transplanted epiphytes and their arboreal soil from upper cloud forest trees to trees at slightly lower elevations that are naturally exposed to less cloud water. Control plants moved between trees within the upper site showed no transplantation effects, but experimental plants at lower sites had significantly higher leaf mortality, lower leaf production, and reduced longevity. After the epiphytes died, seedlings of terrestrial gap-colonizing tree species grew from the seed banks within the residual mats of arboreal soil. Greenhouse experiments confirmed that the death of epiphytes can result in radical compositional changes of canopy communities. Thus, tropical montane epiphyte communities constitute both a potentially powerful tool for detecting climate changes and a rich arena to study plant/soil/seed interactions under natural and manipulated conditions. This study also provides experimental evidence that the potential effects of global climate change on canopy and terrestrial communities can be significant for cloud forest biota. Results suggest there will be negative effects on the productivity and longevity of particular epiphytes and a subsequent emergence of an emerging terrestrial component into the canopy community from a previously suppressed seed bank.
Although the significance of canopy plant communities to ecosystem function is well documented, the process by which such communities become established in trees remains poorly known. Colonization of tree surfaces by canopy-dwelling plants often begins with the establishment of bryophytes, so the conditions that affect the dispersal of bryophytes in the forest canopy merit study. We assessed success rates of one mechanism of bryophyte propagation, the aerial dispersal of macroscopic fragments, using an experimental approach. We quantified interception and retention of marked fragments released from a 36 cm脳36 cm grid 50 cm above branches of saplings and mature trees of the species Ocotea tonduzii in a montane cloud forest in Costa Rica. Only 1% of bryophyte fragments dropped over sapling crowns in this manner were retained for the 6-month duration of the study, while branches in the forest canopy with intact epiphyte loads and branches that had been stripped of their epiphytes retained 24% and 5%, respectively. Our results suggest that larger-diameter branches and the presence of other epiphytes can both improve the retention of bryophyte fragments on canopy branches. Further work will be needed to address the relative roles of other dispersal mechanisms (spores, gemmae, microscopic bryophyte fragments) and the dynamics of growth and establishment of macroscopic bryophyte fragments following their interception.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations鈥揷itations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.